Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 9 December 2008
Vol. 1, Issue 49, p. re11
[DOI: 10.1126/scisignal.149re11]


De Novo Organ Formation from Differentiated Cells: Root Nodule Organogenesis

Martin Crespi* and Florian Frugier

Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique, 91198 Gif sur Yvette cedex, France.

Gloss: The symbiotic interaction between Rhizobium bacteria and legume plants leads to the formation of a new organ emerging from their roots: the nitrogen-fixing nodule. These organs allow legumes, in contrast to cereals and other nonlegumes, to grow in the absence of nitrogen fertilizers, conferring a major agricultural advantage to these crops. Nodule organogenesis is triggered by specific bacterial signals, the Nod factors, and integrates plant developmental regulatory pathways to reactivate differentiated root cortical cells and initiate the formation of a de novo meristem, a plant stem cell niche. We review recent data showing how the transition from differentiated root cortical cells to meristematic cells leads to development of a new organ. Genetic analyses revealed crucial functions of bacterial Nod factors and the plant hormone cytokinin in nodule organogenesis. Genomic analysis of transcriptional networks activated during early nodulation identified additional regulators of this organogenesis, such as transcription factors and small regulatory RNAs or microRNAs. These pathways shed new light on nodule organogenesis and symbiotic nitrogen fixation in crops and in the acquisition of developmental plasticity by differentiated cells.

* Corresponding author. E-mail, Martin.Crespi{at}

Citation: M. Crespi, F. Frugier, De Novo Organ Formation from Differentiated Cells: Root Nodule Organogenesis. Sci. Signal. 1, re11 (2008).

Emerging Functions of Nodulin-Like Proteins in Non-Nodulating Plant Species.
N. Denance, B. Szurek, and L. D. Noel (2014)
Plant Cell Physiol. 55, 469-474
   Abstract »    Full Text »    PDF »
Comparative Genomics Suggests That an Ancestral Polyploidy Event Leads to Enhanced Root Nodule Symbiosis in the Papilionoideae.
Q.-G. Li, L. Zhang, C. Li, J. M. Dunwell, and Y.-M. Zhang (2013)
Mol. Biol. Evol. 30, 2602-2611
   Abstract »    Full Text »    PDF »
NODULE ROOT and COCHLEATA Maintain Nodule Development and Are Legume Orthologs of Arabidopsis BLADE-ON-PETIOLE Genes.
J.-M. Couzigou, V. Zhukov, S. Mondy, G. Abu el Heba, V. Cosson, T. H. N. Ellis, M. Ambrose, J. Wen, M. Tadege, I. Tikhonovich, et al. (2012)
PLANT CELL 24, 4498-4510
   Abstract »    Full Text »    PDF »
Complexity of miRNA-dependent regulation in root symbiosis.
J. Bazin, P. Bustos-Sanmamed, C. Hartmann, C. Lelandais-Briere, and M. Crespi (2012)
Phil Trans R Soc B 367, 1570-1579
   Abstract »    Full Text »    PDF »
WUSCHEL-RELATED HOMEOBOX5 Gene Expression and Interaction of CLE Peptides with Components of the Systemic Control Add Two Pieces to the Puzzle of Autoregulation of Nodulation.
M. A. Osipova, V. Mortier, K. N. Demchenko, V. E. Tsyganov, I. A. Tikhonovich, L. A. Lutova, E. A. Dolgikh, and S. Goormachtig (2012)
Plant Physiology 158, 1329-1341
   Abstract »    Full Text »    PDF »
Analyzing Lateral Root Development: How to Move Forward.
I. De Smet, P. J. White, A. G. Bengough, L. Dupuy, B. Parizot, I. Casimiro, R. Heidstra, M. Laskowski, M. Lepetit, F. Hochholdinger, et al. (2012)
PLANT CELL 24, 15-20
   Abstract »    Full Text »    PDF »
A feedback loop between Wolbachia and the Drosophila gurken mRNP complex influences Wolbachia titer.
L. R. Serbus, A. Ferreccio, M. Zhukova, C. L. McMorris, E. Kiseleva, and W. Sullivan (2011)
J. Cell Sci. 124, 4299-4308
   Abstract »    Full Text »    PDF »
A Phylogenetic Strategy Based on a Legume-Specific Whole Genome Duplication Yields Symbiotic Cytokinin Type-A Response Regulators.
R. H. M. Op den Camp, S. De Mita, A. Lillo, Q. Cao, E. Limpens, T. Bisseling, and R. Geurts (2011)
Plant Physiology 157, 2013-2022
   Abstract »    Full Text »    PDF »
Misexpression of miR482, miR1512, and miR1515 Increases Soybean Nodulation.
H. Li, Y. Deng, T. Wu, S. Subramanian, and O. Yu (2010)
Plant Physiology 153, 1759-1770
   Abstract »    Full Text »    PDF »
Environmental Regulation of Lateral Root Emergence in Medicago truncatula Requires the HD-Zip I Transcription Factor HB1.
F. Ariel, A. Diet, M. Verdenaud, V. Gruber, F. Frugier, R. Chan, and M. Crespi (2010)
PLANT CELL 22, 2171-2183
   Abstract »    Full Text »    PDF »
Genome-Wide Medicago truncatula Small RNA Analysis Revealed Novel MicroRNAs and Isoforms Differentially Regulated in Roots and Nodules.
C. Lelandais-Briere, L. Naya, E. Sallet, F. Calenge, F. Frugier, C. Hartmann, J. Gouzy, and M. Crespi (2009)
PLANT CELL 21, 2780-2796
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882