Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. Signal., 8 December 2009
Vol. 2, Issue 100, p. re9
[DOI: 10.1126/scisignal.2100re9]

REVIEWS

Cracking the Phosphatase Code: Docking Interactions Determine Substrate Specificity

Jagoree Roy and Martha S. Cyert*

Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305–5020, USA.

Gloss: Many biological processes are regulated through alterations in the phosphorylation state of their protein components. Identifying the protein kinases and phosphatases that add and remove phosphate groups to these proteins is critical to understand cellular regulation. Most phosphoserine- and phosphothreonine-specific dephosphorylation is performed by a handful of protein phosphatases, each of which dephosphorylates sites that share little similarity in amino acid sequence. How do these enzymes recognize such diverse substrates with specificity? Studies show that several regions of the phosphatase that are not involved in catalysis are required for its recognition of protein partners. These regions, or docking surfaces, are conserved, and each binds weakly to a small, degenerate sequence motif (that is, a docking site) in a substrate or regulator of a phosphatase. Several of these weak interactions combine to achieve overall binding specificity. This Review, which contains 3 figures and 67 references, discusses genetic and structural studies that identify conserved docking surfaces in protein phosphatase type 1 (PP1) and the Ca2+-calmodulin–regulated phosphatase calcineurin, and show that some phosphatase inhibitors—for example, the immunosuppressants FK506 and cyclosporin A—act by interfering with substrate docking rather than with catalytic activity.

* Corresponding author. E-mail, mcyert{at}stanford.edu

Citation: J. Roy, M. S. Cyert, Cracking the Phosphatase Code: Docking Interactions Determine Substrate Specificity. Sci. Signal. 2, re9 (2009).


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Evolution of Bacterial-Like Phosphoprotein Phosphatases in Photosynthetic Eukaryotes Features Ancestral Mitochondrial or Archaeal Origin and Possible Lateral Gene Transfer.
R. G. Uhrig, D. Kerk, and G. B. Moorhead (2013)
Plant Physiology 163, 1829-1843
   Abstract »    Full Text »    PDF »
A Calcineurin-dependent Switch Controls the Trafficking Function of {alpha}-Arrestin Aly1/Art6.
A. F. O'Donnell, L. Huang, J. Thorner, and M. S. Cyert (2013)
J. Biol. Chem. 288, 24063-24080
   Abstract »    Full Text »    PDF »
Genetic Bypass of Aspergillus nidulans crzA Function in Calcium Homeostasis.
R. S. Almeida, O. Loss, A. C. Colabardini, N. A. Brown, E. Bignell, M. Savoldi, S. Pantano, M. H. S. Goldman, H. N. Arst Jr, and G. H. Goldman (2013)
g3 3, 1129-1141
   Abstract »    Full Text »    PDF »
Engineering A-kinase Anchoring Protein (AKAP)-selective Regulatory Subunits of Protein Kinase A (PKA) through Structure-based Phage Selection.
M. G. Gold, D. M. Fowler, C. K. Means, C. T. Pawson, J. J. Stephany, L. K. Langeberg, S. Fields, and J. D. Scott (2013)
J. Biol. Chem. 288, 17111-17121
   Abstract »    Full Text »    PDF »
A Calcineurin Docking Motif (LXVP) in Dynamin-related Protein 1 Contributes to Mitochondrial Fragmentation and Ischemic Neuronal Injury.
A. M. Slupe, R. A. Merrill, K. H. Flippo, M. A. Lobas, J. C. D. Houtman, and S. Strack (2013)
J. Biol. Chem. 288, 12353-12365
   Abstract »    Full Text »    PDF »
Splice Cassette II of Na+,HCOFormula Cotransporter NBCn1 (slc4a7) Interacts with Calcineurin A: IMPLICATIONS FOR TRANSPORTER ACTIVITY AND INTRACELLULAR pH CONTROL DURING RAT ARTERY CONTRACTIONS.
A. A. Danielsen, M. D. Parker, S. Lee, W. F. Boron, C. Aalkjaer, and E. Boedtkjer (2013)
J. Biol. Chem. 288, 8146-8155
   Abstract »    Full Text »    PDF »
A High-throughput Assay for Phosphoprotein-specific Phosphatase Activity in Cellular Extracts.
A. K. Bose and K. A. Janes (2013)
Mol. Cell. Proteomics 12, 797-806
   Abstract »    Full Text »    PDF »
G-actin regulates the shuttling and PP1 binding of the RPEL protein Phactr1 to control actomyosin assembly.
M. Wiezlak, J. Diring, J. Abella, S. Mouilleron, M. Way, N. Q. McDonald, and R. Treisman (2012)
J. Cell Sci. 125, 5860-5872
   Abstract »    Full Text »    PDF »
Calcineurin regulates endothelial barrier function by interaction with and dephosphorylation of myosin phosphatase.
B. Kolozsvari, E. Bako, B. Becsi, A. Kiss, A. Czikora, A. Toth, G. Vamosi, P. Gergely, and F. Erdodi (2012)
Cardiovasc Res 96, 494-503
   Abstract »    Full Text »    PDF »
The WNK/SPAK and IRBIT/PP1 Pathways in Epithelial Fluid and Electrolyte Transport.
S. Park, J. H. Hong, E. Ohana, and S. Muallem (2012)
Physiology 27, 291-299
   Abstract »    Full Text »    PDF »
Cell Surface Expression of the Major Amyloid-{beta} Peptide (A{beta})-degrading Enzyme, Neprilysin, Depends on Phosphorylation by Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase Kinase (MEK) and Dephosphorylation by Protein Phosphatase 1a.
N. Kakiya, T. Saito, P. Nilsson, Y. Matsuba, S. Tsubuki, N. Takei, H. Nawa, and T. C. Saido (2012)
J. Biol. Chem. 287, 29362-29372
   Abstract »    Full Text »    PDF »
Differential regulation of a CLC anion channel by SPAK kinase ortholog-mediated multisite phosphorylation.
H. Miyazaki and K. Strange (2012)
Am J Physiol Cell Physiol 302, C1702-C1712
   Abstract »    Full Text »    PDF »
The C2 Domain Protein Cts1 Functions in the Calcineurin Signaling Circuit during High-Temperature Stress Responses in Cryptococcus neoformans.
E. F. Aboobakar, X. Wang, J. Heitman, and L. Kozubowski (2011)
Eukaryot. Cell 10, 1714-1723
   Abstract »    Full Text »    PDF »
Overview: The Maturing of Proteomics in Cardiovascular Research.
J. E. Van Eyk (2011)
Circ. Res. 108, 490-498
   Abstract »    Full Text »    PDF »
Multiple Pathways for Protein Phosphatase 1 (PP1) Regulation of Na-K-2Cl Cotransporter (NKCC1) Function: THE N-TERMINAL TAIL OF THE Na-K-2Cl COTRANSPORTER SERVES AS A REGULATORY SCAFFOLD FOR Ste20-RELATED PROLINE/ALANINE-RICH KINASE (SPAK) AND PP1.
K. B. Gagnon and E. Delpire (2010)
J. Biol. Chem. 285, 14115-14121
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882