Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. STKE, 4 December 2001
Vol. 2001, Issue 111, p. re19
[DOI: 10.1126/stke.2001.111.re19]


The Complex and Intriguing Lives of PIP2 with Ion Channels and Transporters

Donald W. Hilgemann*, Siyi Feng, and Cem Nasuhoglu

Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9040 USA.

Gloss: Phosphatidylinositol-4,5-bisphosphate (PIP2), a minor phospholipid in the surface membrane of eukaryotic cells, serves as the precursor of several signaling molecules. It is now also clear, however, that PIP2 itself is used by cells to anchor numerous membrane-associated proteins and to regulate membrane-associated processes. The local concentration of PIP2 in the plasma membrane may change during various cell-signaling events, and these changes may then alter the activity of PIP2-binding proteins. Several cytoskeletal proteins are known to be modulated by PIP2, and numerous ion channels, ion pumps, and ion exchangers have now also been found to be PIP2 targets. Recently, changes in PIP2 have been implicated in regulating sensory ion channels, such as those involved in pain perception and phototransduction. In the surface membrane, PIP2 may be restricted to microdomains called "lipid rafts", and thus, PIP2 may serve to localize its binding partners to subdomains of the membrane. Because the activity of proteins can be controlled by the level of PIP2, differences in the concentration of this phospholipid between membranes of the secretory pathway and the plasma membrane may help control the activity of ion transporters during biosynthesis or during vesicle trafficking. Thus, PIP2 may not only be used as a signal to regulate cellular membrane trafficking; it may also control protein activity during trafficking. Clearly, PIP2, like other cell signaling molecules, can be used by cells in multiple ways. Modulation of ion channel and transporter activities in response to stimuli that alter membrane lipid composition appears to be an important role of PIP2 in eukaryotic cell life.

*Corresponding author, Telephone: 214-648-6728, fax: 214-648-8879, e-mail: hilgeman{at}

Citation: D. W. Hilgemann, S. Feng, C. Nasuhoglu, The Complex and Intriguing Lives of PIP2 with Ion Channels and Transporters. Sci. STKE 2001, re19 (2001).

Phosphatidylinositol 4,5-Biphosphate (PIP2) Modulates Interaction of Syntaxin-1A with Sulfonylurea Receptor 1 to Regulate Pancreatic {beta}-Cell ATP-sensitive Potassium Channels.
T. Liang, L. Xie, C. Chao, Y. Kang, X. Lin, T. Qin, H. Xie, Z.-P. Feng, and H. Y. Gaisano (2014)
J. Biol. Chem. 289, 6028-6040
   Abstract »    Full Text »    PDF »
Amphetamine actions at the serotonin transporter rely on the availability of phosphatidylinositol-4,5-bisphosphate.
F. Buchmayer, K. Schicker, T. Steinkellner, P. Geier, G. Stubiger, P. J. Hamilton, A. Jurik, T. Stockner, J.-W. Yang, T. Montgomery, et al. (2013)
PNAS 110, 11642-11647
   Abstract »    Full Text »    PDF »
Localization of Phosphatidylinositol 4,5-Bisphosphate to Lipid Rafts and Uroids in the Human Protozoan Parasite Entamoeba histolytica.
A. B. Koushik, R. R. Powell, and L. A. Temesvari (2013)
Infect. Immun. 81, 2145-2155
   Abstract »    Full Text »    PDF »
Phosphoinositides alter lipid bilayer properties.
R. Rusinova, E. A. Hobart, R. E. Koeppe II, and O. S. Andersen (2013)
J. Gen. Physiol. 141, 673-690
   Abstract »    Full Text »    PDF »
Ambient Temperature Affects the Temperature Threshold for TRPM8 Activation through Interaction of Phosphatidylinositol 4,5-Bisphosphate.
F. Fujita, K. Uchida, M. Takaishi, T. Sokabe, and M. Tominaga (2013)
J. Neurosci. 33, 6154-6159
   Abstract »    Full Text »    PDF »
The where and how of PIP regulation of cone photoreceptor CNG channels.
L. Zhou and D. E. Logothetis (2013)
J. Gen. Physiol. 141, 403-407
   Full Text »    PDF »
Depletion of PtdIns(4,5)P2 underlies retinal degeneration in Drosophila trp mutants.
S. Sengupta, T. R. Barber, H. Xia, D. F. Ready, and R. C. Hardie (2013)
J. Cell Sci. 126, 1247-1259
   Abstract »    Full Text »    PDF »
Interplay between Calmodulin and Phosphatidylinositol 4,5-Bisphosphate in Ca2+-induced Inactivation of Transient Receptor Potential Vanilloid 6 Channels.
C. Cao, E. Zakharian, I. Borbiro, and T. Rohacs (2013)
J. Biol. Chem. 288, 5278-5290
   Abstract »    Full Text »    PDF »
Distant Cytosolic Residues Mediate a Two-way Molecular Switch That Controls the Modulation of Inwardly Rectifying Potassium (Kir) Channels by Cholesterol and Phosphatidylinositol 4,5-Bisphosphate (PI(4,5)P2).
A. Rosenhouse-Dantsker, S. Noskov, H. Han, S. K. Adney, Q.-Y. Tang, A. A. Rodriguez-Menchaca, G. B. Kowalsky, V. I. Petrou, C. V. Osborn, D. E. Logothetis, et al. (2012)
J. Biol. Chem. 287, 40266-40278
   Abstract »    Full Text »    PDF »
Dual Effect of Phosphatidyl (4,5)-Bisphosphate PIP2 on Shaker K+ Channels.
F. Abderemane-Ali, Z. Es-Salah-Lamoureux, L. Delemotte, M. A. Kasimova, A. J. Labro, D. J. Snyders, D. Fedida, M. Tarek, I. Baro, and G. Loussouarn (2012)
J. Biol. Chem. 287, 36158-36167
   Abstract »    Full Text »    PDF »
PIP2 controls voltage-sensor movement and pore opening of Kv channels through the S4-S5 linker.
A. A. Rodriguez-Menchaca, S. K. Adney, Q.-Y. Tang, X.-Y. Meng, A. Rosenhouse-Dantsker, M. Cui, and D. E. Logothetis (2012)
PNAS 109, E2399-E2408
   Abstract »    Full Text »    PDF »
Fitting KV potassium channels into the PIP2 puzzle: Hille group connects dots between illustrious HH groups.
D. W. Hilgemann (2012)
J. Gen. Physiol. 140, 245-248
   Full Text »    PDF »
PI4P and PI(4,5)P2 Are Essential But Independent Lipid Determinants of Membrane Identity.
G. R. V. Hammond, M. J. Fischer, K. E. Anderson, J. Holdich, A. Koteci, T. Balla, and R. F. Irvine (2012)
Science 337, 727-730
   Abstract »    Full Text »    PDF »
Regulation of voltage-gated potassium channels by PI(4,5)P2.
M. Kruse, G. R. V. Hammond, and B. Hille (2012)
J. Gen. Physiol. 140, 189-205
   Abstract »    Full Text »    PDF »
Phosphoinositide isoforms determine compartment-specific ion channel activity.
X. Zhang, X. Li, and H. Xu (2012)
PNAS 109, 11384-11389
   Abstract »    Full Text »    PDF »
Distinct subunit contributions to the activation of M-type potassium channels by PI(4,5)P2.
V. Telezhkin, D. A. Brown, and A. J. Gibb (2012)
J. Gen. Physiol. 140, 41-53
   Abstract »    Full Text »    PDF »
Membrane Depolarization Increases Membrane PtdIns(4,5)P2 Levels through Mechanisms Involving PKC {beta}II and PI4 Kinase.
X. Chen, X. Zhang, C. Jia, J. Xu, H. Gao, G. Zhang, X. Du, and H. Zhang (2011)
J. Biol. Chem. 286, 39760-39767
   Abstract »    Full Text »    PDF »
Hadp1, a newly identified pleckstrin homology domain protein, is required for cardiac contractility in zebrafish.
J. D. Wythe, M. J. Jurynec, L. D. Urness, C. A. Jones, M. K. Sabeh, A. A. Werdich, M. Sato, H. J. Yost, D. J. Grunwald, C. A. MacRae, et al. (2011)
Dis. Model. Mech. 4, 607-621
   Abstract »    Full Text »    PDF »
N-terminal transmembrane domain of SUR1 controls gating of Kir6.2 by modulating channel sensitivity to PIP2.
E. B. Pratt, P. Tewson, C. E. Bruederle, W. R. Skach, and S.-L. Shyng (2011)
J. Gen. Physiol. 137, 299-314
   Abstract »    Full Text »    PDF »
Gating of Transient Receptor Potential Melastatin 8 (TRPM8) Channels Activated by Cold and Chemical Agonists in Planar Lipid Bilayers.
E. Zakharian, C. Cao, and T. Rohacs (2010)
J. Neurosci. 30, 12526-12534
   Abstract »    Full Text »    PDF »
Phosphoinositides: lipid regulators of membrane proteins.
B. H. Falkenburger, J. B. Jensen, E. J. Dickson, B.-C. Suh, and B. Hille (2010)
J. Physiol. 588, 3179-3185
   Abstract »    Full Text »    PDF »
Histaminergic responses by hypothalamic neurons that regulate lordosis and their modulation by estradiol.
C. Dupre, M. Lovett-Barron, D. W. Pfaff, and L.-M. Kow (2010)
PNAS 107, 12311-12316
   Abstract »    Full Text »    PDF »
Acute manipulation of Golgi phosphoinositides to assess their importance in cellular trafficking and signaling.
Z. Szentpetery, P. Varnai, and T. Balla (2010)
PNAS 107, 8225-8230
   Abstract »    Full Text »    PDF »
Cholesterol Inhibits M-type K+ Channels via Protein Kinase C-dependent Phosphorylation in Sympathetic Neurons.
S.-Y. Lee, H.-K. Choi, S.-T. Kim, S. Chung, M. K. Park, J.-H. Cho, W.-K. Ho, and H. Cho (2010)
J. Biol. Chem. 285, 10939-10950
   Abstract »    Full Text »    PDF »
Depolarization Increases Phosphatidylinositol (PI) 4,5-Bisphosphate Level and KCNQ Currents through PI 4-Kinase Mechanisms.
X. Zhang, X. Chen, C. Jia, X. Geng, X. Du, and H. Zhang (2010)
J. Biol. Chem. 285, 9402-9409
   Abstract »    Full Text »    PDF »
P2Y4-Mediated Regulation of Na+ Absorption in the Reissner's Membrane of the Cochlea.
C.-H. Kim, H.-Y. Kim, H. S. Lee, S. O. Chang, S.-H. Oh, and J. H. Lee (2010)
J. Neurosci. 30, 3762-3769
   Abstract »    Full Text »    PDF »
Putting G protein-coupled receptor-mediated activation of phospholipase C in the limelight.
T. Balla (2010)
J. Gen. Physiol. 135, 77-80
   Full Text »    PDF »
Kinetics of PIP2 metabolism and KCNQ2/3 channel regulation studied with a voltage-sensitive phosphatase in living cells.
B. H. Falkenburger, J. B. Jensen, and B. Hille (2010)
J. Gen. Physiol. 135, 99-114
   Abstract »    Full Text »    PDF »
Affinity for phosphatidylinositol 4,5-bisphosphate determines muscarinic agonist sensitivity of Kv7 K+ channels.
C. C. Hernandez, B. Falkenburger, and M. S. Shapiro (2009)
J. Gen. Physiol. 134, 437-448
   Abstract »    Full Text »    PDF »
Alchemy in the Soup: Transforming Metabolic Signals to Excitability.
C. G. Nichols (2007)
Sci. STKE 2007, pe59
   Abstract »    Full Text »    PDF »
Rapid Chemically Induced Changes of PtdIns(4,5)P2 Gate KCNQ Ion Channels.
B.-C. Suh, T. Inoue, T. Meyer, and B. Hille (2006)
Science 314, 1454-1457
   Abstract »    Full Text »    PDF »
Inhibition of a background potassium channel by Gq protein {alpha}-subunits.
X. Chen, E. M. Talley, N. Patel, A. Gomis, W. E. McIntire, B. Dong, F. Viana, J. C. Garrison, and D. A. Bayliss (2006)
PNAS 103, 3422-3427
   Abstract »    Full Text »    PDF »
BIOCHEMISTRY: Oily Barbarians Breach Ion Channel Gates.
D. W. Hilgemann (2004)
Science 304, 223-224
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882