Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. STKE, 11 December 2001
Vol. 2001, Issue 112, p. re21
[DOI: 10.1126/stke.2001.112.re21]


VEGF Receptor Signal Transduction

Taro Matsumoto and Lena Claesson-Welsh*

Department of Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Dag Hammarskjöldsv. 20, 751 85 Uppsala, Sweden.

Gloss: Vascular endothelial growth factors (VEGFs) constitute an expanding family of growth factors that have received considerable attention from the basic research community but also from clinically active scientists and pharmaceutical companies. The reason for the interest in this growth factor family is its pivotal role in formation of the vascular tree during embryogenesis, as well as in formation of new vessels from preexisting ones, a process called angiogenesis. Normally, angiogenesis is tightly regulated, but in diseases such as cancer, diabetes, and chronic inflammatory diseases, excess VEGF is produced, leading to hyperstimulated and dysfunctional vessels. VEGF proteins bind to cell surface-expressed receptor molecules, denoted VEGF receptor-1, -2, and -3. VEGF receptor-1 and -2 are expressed on endothelial cells in blood vessels, whereas VEGF receptor-3 is expressed on cells in lymphatic vessels. Inactivation of certain of the genes encoding the VEGF proteins or the VEGF receptors is incompatible with normal vascular development. This review outlines the current knowledge about the role of the VEGF proteins and VEGF receptors in the formation of new blood vessels.

Corresponding author. E-mail: Lena.Welsh{at}

Citation: T. Matsumoto, L. Claesson-Welsh, VEGF Receptor Signal Transduction. Sci. STKE 2001, re21 (2001).

Less stress, more success? Oncological implications of surgery-induced oxidative stress.
D. P. O'Leary, J. H. Wang, T. G. Cotter, and H. P. Redmond (2013)
Gut 62, 461-470
   Abstract »    Full Text »    PDF »
The VEGF Pathway in Cancer and Disease: Responses, Resistance, and the Path Forward.
M. W. Kieran, R. Kalluri, and Y.-J. Cho (2012)
Cold Spring Harb Perspect Med 2, a006593
   Abstract »    Full Text »    PDF »
Nanoparticle-Mediated Delivery of Pioglitazone Enhances Therapeutic Neovascularization in a Murine Model of Hindlimb Ischemia.
R. Nagahama, T. Matoba, K. Nakano, S. Kim-Mitsuyama, K. Sunagawa, and K. Egashira (2012)
Arterioscler Thromb Vasc Biol 32, 2427-2434
   Abstract »    Full Text »    PDF »
NHERF-2 maintains endothelial homeostasis.
R. Bhattacharya, E. Wang, S. K. Dutta, P. K. Vohra, G. E, Y. S. Prakash, and D. Mukhopadhyay (2012)
Blood 119, 4798-4806
   Abstract »    Full Text »    PDF »
Axl is essential for VEGF-A-dependent activation of PI3K/Akt.
G.-X. Ruan and A. Kazlauskas (2012)
EMBO J. 31, 1692-1703
   Abstract »    Full Text »    PDF »
Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair.
M. J. Webber, J. Tongers, C. J. Newcomb, K.-T. Marquardt, J. Bauersachs, D. W. Losordo, and S. I. Stupp (2011)
PNAS 108, 13438-13443
   Abstract »    Full Text »    PDF »
Angiogenic Growth Factors Are New and Essential Players in the Sustained Relaxin Vasodilatory Pathway in Rodents and Humans.
J. T. McGuane, L. A. Danielson, J. E. Debrah, J. P. Rubin, J. Novak, and K. P. Conrad (2011)
Hypertension 57, 1151-1160
   Abstract »    Full Text »    PDF »
Regulation of vascular endothelial growth factor receptor 2 trafficking and angiogenesis by Golgi localized t-SNARE syntaxin 6.
V. Manickam, A. Tiwari, J.-J. Jung, R. Bhattacharya, A. Goel, D. Mukhopadhyay, and A. Choudhury (2011)
Blood 117, 1425-1435
   Abstract »    Full Text »    PDF »
Inhibition of Angiogenesis by Recombinant VEGF Receptor Fragments.
D. Ahmadvand, F. Rahbarizadeh, F. Jafari Iri-Sofla, G. Namazi, S. Khaleghi, B. Geramizadeh, P. Pasalar, H. Karimi, and S. H. Aghaee Bakhtiari (2010)
Lab Med 41, 417-422
   Abstract »    Full Text »    PDF »
Knockdown of stromal interaction molecule 1 attenuates hepatocyte growth factor-induced endothelial progenitor cell proliferation.
Y. Shi, M. Song, R. Guo, H. Wang, P. Gao, W. Shi, and L. Huang (2010)
Experimental Biology and Medicine 235, 317-325
   Abstract »    Full Text »    PDF »
Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells.
T. T. Chen, A. Luque, S. Lee, S. M. Anderson, T. Segura, and M. L. Iruela-Arispe (2010)
J. Cell Biol. 188, 595-609
   Abstract »    Full Text »    PDF »
Membrane Ganglioside Enrichment Lowers the Threshold for Vascular Endothelial Cell Angiogenic Signaling.
Y. Liu, J. McCarthy, and S. Ladisch (2006)
Cancer Res. 66, 10408-10414
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882