Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. STKE, 24 June 2003
Vol. 2003, Issue 188, p. re10
[DOI: 10.1126/stke.2003.188.re10]

REVIEWS

Voltage-Gated K Channels

Clay M. Armstrong*

Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.

Gloss: This STKE review discusses the structural basis for the selectivity and voltage-dependent gating of the voltage-gated K channel. Ion channels and the electrical properties they confer on cells are involved in every human characteristic that distinguishes us from the stones in a field. Every perception, thought, movement, and heartbeat depends on electrical signals generated by the activity of ion channels. These membrane proteins must show specificity for particular ionic species, facilitate the rapid movement of the selected ions across the cell membrane, and open and shut (gate) in response to appropriate signals. Such gating signals may include changes in the voltage across the cell membrane, mechanical deformation of the membrane, and various chemicals. This review, which focuses on voltage-gated K channels, goes from early views of the relationship between ion channel structure and function to our current picture of how selectivity, conduction, and gating are achieved. This review has eight figures and 56 references.

*Contact information. E-mail, Carmstro{at}mail.med.upenn.edu

Citation: C. M. Armstrong, Voltage-Gated K Channels. Sci. STKE 2003, re10 (2003).


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Mitochondrial Channels: Ion Fluxes and More.
I. Szabo and M. Zoratti (2014)
Physiol Rev 94, 519-608
   Abstract »    Full Text »    PDF »
BK channel opening involves side-chain reorientation of multiple deep-pore residues.
X. Chen, J. Yan, and R. W. Aldrich (2014)
PNAS 111, E79-E88
   Abstract »    Full Text »    PDF »
Structural basis of ion permeation gating in Slo2.1 K+ channels.
P. Garg, A. Gardner, V. Garg, and M. C. Sanguinetti (2013)
J. Gen. Physiol. 142, 523-542
   Abstract »    Full Text »    PDF »
Stabilization of the Conductive Conformation of a Voltage-gated K+ (Kv) Channel: THE LID MECHANISM.
J. S. Santos, R. Syeda, and M. Montal (2013)
J. Biol. Chem. 288, 16619-16628
   Abstract »    Full Text »    PDF »
Tetrameric assembly of KvLm K+ channels with defined numbers of voltage sensors.
R. Syeda, J. S. Santos, M. Montal, and H. Bayley (2012)
PNAS 109, 16917-16922
   Abstract »    Full Text »    PDF »
Probing the activation sequence of NMDA receptors with lurcher mutations.
S. E. Murthy, T. Shogan, J. C. Page, E. M. Kasperek, and G. K. Popescu (2012)
J. Gen. Physiol. 140, 267-277
   Abstract »    Full Text »    PDF »
Relative transmembrane segment rearrangements during BK channel activation resolved by structurally assigned fluorophore-quencher pairing.
A. Pantazis and R. Olcese (2012)
J. Gen. Physiol. 140, 207-218
   Abstract »    Full Text »    PDF »
The Contribution of RCK Domains to Human BK Channel Allosteric Activation.
N. Savalli, A. Pantazis, T. Yusifov, D. Sigg, and R. Olcese (2012)
J. Biol. Chem. 287, 21741-21750
   Abstract »    Full Text »    PDF »
The DEG/ENaC Protein MEC-10 Regulates the Transduction Channel Complex in Caenorhabditis elegans Touch Receptor Neurons.
J. Arnadottir, R. O'Hagan, Y. Chen, M. B. Goodman, and M. Chalfie (2011)
J. Neurosci. 31, 12695-12704
   Abstract »    Full Text »    PDF »
Where's the gate? Gating in the deep pore of the BKCa channel.
D. H. Cox and T. Hoshi (2011)
J. Gen. Physiol. 138, 133-136
   Full Text »    PDF »
Relative motion of transmembrane segments S0 and S4 during voltage sensor activation in the human BKCa channel.
A. Pantazis, A. P. Kohanteb, and R. Olcese (2010)
J. Gen. Physiol. 136, 645-657
   Abstract »    Full Text »    PDF »
Separate Gating Mechanisms Mediate the Regulation of K2P Potassium Channel TASK-2 by Intra- and Extracellular pH.
M. I. Niemeyer, L. P. Cid, G. Pena-Munzenmayer, and F. V. Sepulveda (2010)
J. Biol. Chem. 285, 16467-16475
   Abstract »    Full Text »    PDF »
Operation of the voltage sensor of a human voltage- and Ca2+-activated K+ channel.
A. Pantazis, V. Gudzenko, N. Savalli, D. Sigg, and R. Olcese (2010)
PNAS 107, 4459-4464
   Abstract »    Full Text »    PDF »
Functional Analysis of the Kv1.1 N255D Mutation Associated with Autosomal Dominant Hypomagnesemia.
J. van der Wijst, B. Glaudemans, H. Venselaar, A. V. Nair, A.-L. Forst, J. G. J. Hoenderop, and R. J. M. Bindels (2010)
J. Biol. Chem. 285, 171-178
   Abstract »    Full Text »    PDF »
Coupling of activation and inactivation gate in a K+-channel: potassium and ligand sensitivity.
C. Ader, R. Schneider, S. Hornig, P. Velisetty, V. Vardanyan, K. Giller, I. Ohmert, S. Becker, O. Pongs, and M. Baldus (2009)
EMBO J. 28, 2825-2834
   Abstract »    Full Text »    PDF »
Molecular Template for a Voltage Sensor in a Novel K+ Channel. III. Functional Reconstitution of a Sensorless Pore Module from a Prokaryotic Kv Channel.
J. S. Santos, S. M. Grigoriev, and M. Montal (2008)
J. Gen. Physiol. 132, 651-666
   Abstract »    Full Text »    PDF »
Vertebrate Membrane Proteins: Structure, Function, and Insights from Biophysical Approaches.
D. J. Muller, N. Wu, and K. Palczewski (2008)
Pharmacol. Rev. 60, 43-78
   Abstract »    Full Text »    PDF »
A Quantitative Description of KcsA Gating I: Macroscopic Currents.
S. Chakrapani, J. F Cordero-Morales, and E. Perozo (2007)
J. Gen. Physiol. 130, 465-478
   Abstract »    Full Text »    PDF »
The Role of Distal S6 Hydrophobic Residues in the Voltage-dependent Gating of CaV2.3 Channels.
A. Raybaud, E.-E. Baspinar, F. Dionne, Y. Dodier, R. Sauve, and L. Parent (2007)
J. Biol. Chem. 282, 27944-27952
   Abstract »    Full Text »    PDF »
Hydrophobic Interface between Two Regulators of K+ Conductance Domains Critical for Calcium-dependent Activation of Large Conductance Ca2+-activated K+ Channels.
H.-J. Kim, H.-H. Lim, S.-H. Rho, S. H. Eom, and C.-S. Park (2006)
J. Biol. Chem. 281, 38573-38581
   Abstract »    Full Text »    PDF »
Multifunctional Potassium Channels: Electrical Switches and Redox Enzymes, All in One.
S. H. Heinemann and T. Hoshi (2006)
Sci. STKE 2006, pe33
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882