Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. STKE, 16 December 2003
Vol. 2003, Issue 213, p. re16
[DOI: 10.1126/stke.2132003re16]

REVIEWS

Membrane Recognition and Targeting by Lipid-Binding Domains

Jonathan P. DiNitto, Thomas C. Cronin, and David G. Lambright*

Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.

Gloss: With eight figures, one table, and 155 references, this STKE Review describes the structural features that explain how modular domains interact with lipids. Various specific and nonspecific interactions contribute to the ability of proteins to recognize cellular membranes, allowing proteins with lipid-binding domains to play roles in cellular signaling and membrane trafficking.

*Corresponding author. Telephone, 508-856-6876; fax, 508-856-4289; e-mail, David.Lambright{at}umassmed.edu

Citation: J. P. DiNitto, T. C. Cronin, D. G. Lambright, Membrane Recognition and Targeting by Lipid-Binding Domains. Sci. STKE 2003, re16 (2003).


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
PIP3 Induces the Recycling of Receptor Tyrosine Kinases.
V. Laketa, S. Zarbakhsh, A. Traynor-Kaplan, A. MacNamara, D. Subramanian, M. Putyrski, R. Mueller, A. Nadler, M. Mentel, J. Saez-Rodriguez, et al. (2014)
Science Signaling 7, ra5
   Abstract »    Full Text »    PDF »
High-throughput fluorescence assay for membrane-protein interaction.
H. Kim, H. S. Afsari, and W. Cho (2013)
J. Lipid Res. 54, 3531-3538
   Abstract »    Full Text »    PDF »
Phosphoinositides Differentially Regulate Protrudin Localization through the FYVE Domain.
J.-E. Gil, E. Kim, I.-S. Kim, B. Ku, W. S. Park, B.-H. Oh, S. H. Ryu, W. Cho, and W. D. Heo (2012)
J. Biol. Chem. 287, 41268-41276
   Abstract »    Full Text »    PDF »
A structure-based protocol for learning the family-specific mechanisms of membrane-binding domains.
M. Kallberg, N. Bhardwaj, R. Langlois, and H. Lu (2012)
Bioinformatics 28, i431-i437
   Abstract »    Full Text »    PDF »
IQGAP Proteins Reveal an Atypical Phosphoinositide (aPI) Binding Domain with a Pseudo C2 Domain Fold.
M. J. Dixon, A. Gray, M. Schenning, M. Agacan, W. Tempel, Y. Tong, L. Nedyalkova, H.-W. Park, N. R. Leslie, D. M. F. van Aalten, et al. (2012)
J. Biol. Chem. 287, 22483-22496
   Abstract »    Full Text »    PDF »
Structural Basis of Phosphoinositide Binding to Kindlin-2 Protein Pleckstrin Homology Domain in Regulating Integrin Activation.
J. Liu, K. Fukuda, Z. Xu, Y.-Q. Ma, J. Hirbawi, X. Mao, C. Wu, E. F. Plow, and J. Qin (2011)
J. Biol. Chem. 286, 43334-43342
   Abstract »    Full Text »    PDF »
Optical probing of a dynamic membrane interaction that regulates the TREK1 channel.
G. Sandoz, S. C. Bell, and E. Y. Isacoff (2011)
PNAS 108, 2605-2610
   Abstract »    Full Text »    PDF »
Structure-Function Study of the N-terminal Domain of Exocyst Subunit Sec3.
K. Baek, A. Knodler, S. H. Lee, X. Zhang, K. Orlando, J. Zhang, T. J. Foskett, W. Guo, and R. Dominguez (2010)
J. Biol. Chem. 285, 10424-10433
   Abstract »    Full Text »    PDF »
Lipid binding domains: more than simple lipid effectors.
R. V. Stahelin (2009)
J. Lipid Res. 50, S299-S304
   Abstract »    Full Text »    PDF »
Androgen receptor and growth factor signaling cross-talk in prostate cancer cells.
M.-L. Zhu and N. Kyprianou (2008)
Endocr. Relat. Cancer 15, 841-849
   Abstract »    Full Text »    PDF »
Global Topology Analysis of Pancreatic Zymogen Granule Membrane Proteins.
X. Chen, P. J. Ulintz, E. S. Simon, J. A. Williams, and P. C. Andrews (2008)
Mol. Cell. Proteomics 7, 2323-2336
   Abstract »    Full Text »    PDF »
Interaction between the Human Immunodeficiency Virus Type 1 Gag Matrix Domain and Phosphatidylinositol-(4,5)-Bisphosphate Is Essential for Efficient Gag Membrane Binding.
V. Chukkapalli, I. B. Hogue, V. Boyko, W.-S. Hu, and A. Ono (2008)
J. Virol. 82, 2405-2417
   Abstract »    Full Text »    PDF »
Clustering and synaptic targeting of PICK1 requires direct interaction between the PDZ domain and lipid membranes.
L. Pan, H. Wu, C. Shen, Y. Shi, W. Jin, J. Xia, and M. Zhang (2007)
EMBO J. 26, 4576-4587
   Abstract »    Full Text »    PDF »
The WD40 and FYVE domain containing protein 2 defines a class of early endosomes necessary for endocytosis.
A. Hayakawa, D. Leonard, S. Murphy, S. Hayes, M. Soto, K. Fogarty, C. Standley, K. Bellve, D. Lambright, C. Mello, et al. (2006)
PNAS 103, 11928-11933
   Abstract »    Full Text »    PDF »
Biochemistry. Viral glycoproteins and an evolutionary conundrum..
A. C. Steven and P. G. Spear (2006)
Science 313, 177-178
   Abstract »    Full Text »    PDF »
Building Signaling Complexes at the Membrane.
W. Cho (2006)
Sci. STKE 2006, pe7
   Abstract »    Full Text »    PDF »
Ligation of CD28 Stimulates the Formation of a Multimeric Signaling Complex Involving Grb-2-Associated Binder 2 (Gab2), Src Homology Phosphatase-2, and Phosphatidylinositol 3-Kinase: Evidence That Negative Regulation of CD28 Signaling Requires the Gab2 Pleckstrin Homology Domain.
R. V. Parry, G. C. Whittaker, M. Sims, C. E. Edmead, M. J. Welham, and S. G. Ward (2006)
J. Immunol. 176, 594-602
   Abstract »    Full Text »    PDF »
Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane.
A. Ono, S. D. Ablan, S. J. Lockett, K. Nagashima, and E. O. Freed (2004)
PNAS 101, 14889-14894
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882