Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. STKE, 29 June 2004
Vol. 2004, Issue 239, p. re9
[DOI: 10.1126/stke.2392004re9]


The Domains of Apoptosis: A Genomics Perspective

John C. Reed*, Kutbuddin S. Doctor, and Adam Godzik*

The Burnham Institute, La Jolla, CA 92037, USA.

Gloss: Programmed cell death, also known as apoptosis, plays important roles in many aspects of normal physiology in animal species, including programmed death associated with fetal development or metamorphosis, tissue homeostasis, elimination of inappropriate cells in the immune system, and some aspects of aging. Defects in the regulation of apoptosis contribute to multiple diseases; for example, lack of apoptosis contributes to cancer, and excessive apoptosis is associated with neurodegenerative and autoimmune diseases. Apoptosis also functions as a defense mechanism against viruses and microbes. In the regulatory machinery that contols apoptosis, interactions between key proteins are determined by small protein segments or domains that allow cells to react appropriately to signals from within or outside the cell. In this Review, we examine the range of human proteins that contain these domains and discuss how the resultant protein interactions help control cell death. These same domains provide possible targets for the development of drugs that could beneficially modulate apoptosis.

*To whom correspondence should be addressed. E-mail: jreed{at} (J.C.R.); adam{at} (A.G.)

Citation: J. C. Reed, K. S. Doctor, A. Godzik, The Domains of Apoptosis: A Genomics Perspective. Sci. STKE 2004, re9 (2004).

A Genome-Wide RNA Interference Screen Identifies Caspase 4 as a Factor Required for Tumor Necrosis Factor Alpha Signaling.
D. Nickles, C. Falschlehner, M. Metzig, and M. Boutros (2012)
Mol. Cell. Biol. 32, 3372-3381
   Abstract »    Full Text »    PDF »
A comprehensive manually curated protein-protein interaction database for the Death Domain superfamily.
D. Kwon, J. H. Yoon, S.-Y. Shin, T.-H. Jang, H.-G. Kim, I. So, J.-H. Jeon, and H. H. Park (2012)
Nucleic Acids Res. 40, D331-D336
   Abstract »    Full Text »    PDF »
Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction.
R. Iwasawa, A.-L. Mahul-Mellier, C. Datler, E. Pazarentzos, and S. Grimm (2011)
EMBO J. 30, 556-568
   Abstract »    Full Text »    PDF »
cIAP1 Cooperatively Inhibits Procaspase-3 Activation by the Caspase-9 Apoptosome.
S. P. Burke, L. Smith, and J. B. Smith (2010)
J. Biol. Chem. 285, 30061-30068
   Abstract »    Full Text »    PDF »
Drosophila IAP antagonists form multimeric complexes to promote cell death.
C. Sandu, H. D. Ryoo, and H. Steller (2010)
J. Cell Biol. 190, 1039-1052
   Abstract »    Full Text »    PDF »
Signals: Tinkering with Domains.
E. Bornberg-Bauer (2010)
Science Signaling 3, pe31
   Abstract »    Full Text »    PDF »
Identification of Novel in Vivo Phosphorylation Sites of the Human Proapoptotic Protein BAD: PORE-FORMING ACTIVITY OF BAD IS REGULATED BY PHOSPHORYLATION.
L. Polzien, A. Baljuls, U. E. E. Rennefahrt, A. Fischer, W. Schmitz, R. P. Zahedi, A. Sickmann, R. Metz, S. Albert, R. Benz, et al. (2009)
J. Biol. Chem. 284, 28004-28020
   Abstract »    Full Text »    PDF »
Caspase-2 activation in the absence of PIDDosome formation.
C. Manzl, G. Krumschnabel, F. Bock, B. Sohm, V. Labi, F. Baumgartner, E. Logette, J. Tschopp, and A. Villunger (2009)
J. Cell Biol. 185, 291-303
   Abstract »    Full Text »    PDF »
Gambogic acid is an antagonist of antiapoptotic Bcl-2 family proteins.
D. Zhai, C. Jin, C.-w. Shiau, S. Kitada, A. C. Satterthwait, and J. C. Reed (2008)
Mol. Cancer Ther. 7, 1639-1646
   Abstract »    Full Text »    PDF »
Differential Regulation of Bax and Bak by Anti-apoptotic Bcl-2 Family Proteins Bcl-B and Mcl-1.
D. Zhai, C. Jin, Z. Huang, A. C. Satterthwait, and J. C. Reed (2008)
J. Biol. Chem. 283, 9580-9586
   Abstract »    Full Text »    PDF »
Nur77 converts phenotype of Bcl-B, an antiapoptotic protein expressed in plasma cells and myeloma.
F. Luciano, M. Krajewska, P. Ortiz-Rubio, S. Krajewski, D. Zhai, B. Faustin, J.-M. Bruey, B. Bailly-Maitre, A. Lichtenstein, S. K. Kolluri, et al. (2007)
Blood 109, 3849-3855
   Abstract »    Full Text »    PDF »
Targeting the apoptotic machinery in pancreatic cancers using small-molecule antagonists of the X-linked inhibitor of apoptosis protein.
C. A. Karikari, I. Roy, E. Tryggestad, G. Feldmann, C. Pinilla, K. Welsh, J. C. Reed, E. P. Armour, J. Wong, J. Herman, et al. (2007)
Mol. Cancer Ther. 6, 957-966
   Abstract »    Full Text »    PDF »
Anaplastic Lymphoma Kinase Is a Dependence Receptor Whose Proapoptotic Functions Are Activated by Caspase Cleavage.
J. Mourali, A. Benard, F. C. Lourenco, C. Monnet, C. Greenland, C. Moog-Lutz, C. Racaud-Sultan, D. Gonzalez-Dunia, M. Vigny, P. Mehlen, et al. (2006)
Mol. Cell. Biol. 26, 6209-6222
   Abstract »    Full Text »    PDF »
Phylogenomics of Life-Or-Death Switches in Multicellular Animals: Bcl-2, BH3-Only, and BNip Families of Apoptotic Regulators.
A. Aouacheria, F. Brunet, and M. Gouy (2005)
Mol. Biol. Evol. 22, 2395-2416
   Abstract »    Full Text »    PDF »
WT1 Induces Apoptosis through Transcriptional Regulation of the Proapoptotic Bcl-2 Family Member Bak.
D. J. Morrison, M. A. English, and J. D. Licht (2005)
Cancer Res. 65, 8174-8182
   Abstract »    Full Text »    PDF »
Caspase-1 Is a Direct Target Gene of ETS1 and Plays a Role in ETS1-Induced Apoptosis.
H. Pei, C. Li, Y. Adereth, T. Hsu, D. K. Watson, and R. Li (2005)
Cancer Res. 65, 7205-7213
   Abstract »    Full Text »    PDF »
Analysis of Apoptosis Protein Expression in Early-Stage Colorectal Cancer Suggests Opportunities for New Prognostic Biomarkers.
M. Krajewska, H. Kim, C. Kim, H. Kang, K. Welsh, S.-i. Matsuzawa, M. Tsukamoto, R. G. Thomas, N. Assa-Munt, Z. Piao, et al. (2005)
Clin. Cancer Res. 11, 5451-5461
   Abstract »    Full Text »    PDF »
Human Immunodeficiency Virus Type 1 Nef Potently Induces Apoptosis in Primary Human Brain Microvascular Endothelial Cells via the Activation of Caspases.
E. A. Acheampong, Z. Parveen, L. W. Muthoga, M. Kalayeh, M. Mukhtar, and R. J. Pomerantz (2005)
J. Virol. 79, 4257-4269
   Abstract »    Full Text »    PDF »
Migrate, Differentiate, Proliferate, or Die: Pleiotropic Functions of an Apical "Apoptotic Caspase".
S. Kumar (2004)
Sci. STKE 2004, pe49
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882