Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. STKE, 10 October 2006
Vol. 2006, Issue 356, p. re12
[DOI: 10.1126/stke.3562006re12]


Molecular Signaling Mechanisms Underlying Epileptogenesis

James O. McNamara1,2,3*,{dagger}, Yang Zhong Huang1,{dagger}, and A. Soren Leonard1,{dagger}

1Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
2Department of Medicine (Neurology), Duke University Medical Center, Durham, NC 27710, USA.
3Center for Translational Neuroscience, Duke University Medical Center, Durham, NC 27710, USA.
{dagger}These authors contributed equally to this work.

Gloss: The epilepsies, disorders of recurrent seizures, affect about 1% of the population worldwide. Available therapy is symptomatic in that drugs inhibit seizures but are not disease-modifying; that is, no effective pharmacological prevention or cure has been identified. The term "epileptogenesis" refers to the process by which a normal brain becomes epileptic. Understanding the cellular mechanisms of epileptogenesis in molecular terms may help identify molecular targets for which small-molecule therapeutics can be developed to prevent epileptogenesis in individuals at high risk. A number of acquired and genetic causes of this disorder have been identified, and various in vivo and in vitro models of epileptogenesis have been established. The objective of this STKE Review, with 5 figures, 2 tables, and 199 references, is to review current insights into the molecular signaling mechanisms underlying epileptogenesis, focusing on limbic epileptogenesis in particular.

*Corresponding author. Telephone, 919-684-0320; fax, 919-684-8219; e-mail, jmc{at}

Citation: J. O. McNamara, Y. Z. Huang, A. S. Leonard, Molecular Signaling Mechanisms Underlying Epileptogenesis. Sci. STKE 2006, re12 (2006).

The Class 4 Semaphorin Sema4D Promotes the Rapid Assembly of GABAergic Synapses in Rodent Hippocampus.
M. S. Kuzirian, A. R. Moore, E. K. Staudenmaier, R. H. Friedel, and S. Paradis (2013)
J. Neurosci. 33, 8961-8973
   Abstract »    Full Text »    PDF »
Fast spiking interneuron control of seizure propagation in a cortical slice model of focal epilepsy.
M. Cammarota, G. Losi, A. Chiavegato, M. Zonta, and G. Carmignoto (2013)
J. Physiol. 591, 807-822
   Abstract »    Full Text »    PDF »
Glutamate Receptor 1 Phosphorylation at Serine 831 and 845 Modulates Seizure Susceptibility and Hippocampal Hyperexcitability after Early Life Seizures.
S. N. Rakhade, E. F. Fitzgerald, P. M. Klein, C. Zhou, H. Sun, R. L. Huganir, and F. E. Jensen (2012)
J. Neurosci. 32, 17800-17812
   Abstract »    Full Text »    PDF »
Heterogeneous firing behavior during ictal-like epileptiform activity in vitro.
M. Andreasen and S. Nedergaard (2012)
J Neurophysiol 107, 1379-1392
   Abstract »    Full Text »    PDF »
NMDA receptors regulate GABAA receptor lateral mobility and clustering at inhibitory synapses through serine 327 on the {gamma}2 subunit.
J. Muir, I. L. Arancibia-Carcamo, A. F. MacAskill, K. R. Smith, L. D. Griffin, and J. T. Kittler (2010)
PNAS 107, 16679-16684
   Abstract »    Full Text »    PDF »
Epileptic seizures increase circulating endothelial cells in peripheral blood as early indicators of cerebral vascular damage.
H. Parfenova, C. W. Leffler, D. Tcheranova, S. Basuroy, and A. Zimmermann (2010)
Am J Physiol Heart Circ Physiol 298, H1687-H1698
   Abstract »    Full Text »    PDF »
Mutual Regulation of Src Family Kinases and the Neurotrophin Receptor TrkB.
Y. Z. Huang and J. O. McNamara (2010)
J. Biol. Chem. 285, 8207-8217
   Abstract »    Full Text »    PDF »
BC1 Regulation of Metabotropic Glutamate Receptor-Mediated Neuronal Excitability.
J. Zhong, S.-C. Chuang, R. Bianchi, W. Zhao, H. Lee, A. A. Fenton, R. K. S. Wong, and H. Tiedge (2009)
J. Neurosci. 29, 9977-9986
   Abstract »    Full Text »    PDF »
Cellular Plasticity for Group I mGluR-Mediated Epileptogenesis.
R. Bianchi, S.-C. Chuang, W. Zhao, S. R. Young, and R. K. S. Wong (2009)
J. Neurosci. 29, 3497-3507
   Abstract »    Full Text »    PDF »
Characterization of an epilepsy-associated variant of the human Cl-/HCOFormula exchanger AE3.
G. L. Vilas, D. E. Johnson, P. Freund, and J. R. Casey (2009)
Am J Physiol Cell Physiol 297, C526-C536
   Abstract »    Full Text »    PDF »
BDNF Selectively Regulates GABAA Receptor Transcription by Activation of the JAK/STAT Pathway.
I. V. Lund, Y. Hu, Y. H. Raol, R. S. Benham, R. Faris, S. J. Russek, and A. R. Brooks-Kayal (2008)
Science Signaling 1, ra9
   Abstract »    Full Text »    PDF »
Early Alterations of AMPA Receptors Mediate Synaptic Potentiation Induced by Neonatal Seizures.
S. N. Rakhade, C. Zhou, P. K. Aujla, R. Fishman, N. J. Sucher, and F. E. Jensen (2008)
J. Neurosci. 28, 7979-7990
   Abstract »    Full Text »    PDF »
Regulation of synaptic inhibition by phospho-dependent binding of the AP2 complex to a YECL motif in the GABAA receptor {gamma}2 subunit.
J. T. Kittler, G. Chen, V. Kukhtina, A. Vahedi-Faridi, Z. Gu, V. Tretter, K. R. Smith, K. McAinsh, I. L. Arancibia-Carcamo, W. Saenger, et al. (2008)
PNAS 105, 3616-3621
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882