Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. STKE, 21 August 2007
Vol. 2007, Issue 400, p. re5
[DOI: 10.1126/stke.4002007re5]

REVIEWS

Filopodia: The Fingers That Do the Walking

Stephanie L. Gupton* and Frank B. Gertler

Department of Biology, Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Gloss: The actin cytoskeleton is regulated by a vast number of proteins that modulate the types of actin-based structures formed in the cell. The filopodium, one such actin-based structure, is composed of bundles of parallel, filamentous actin that extend from the edge of the cell and is thought to act as a sensor of the extracellular environment. Filopodia are involved in many cellular functions, including cell-cell signaling, cell migration toward extracellular guidance factors, and adhesion to the extracellular environment. Several of the molecules that modulate the actin cytoskeleton, such as the Arp2/3 (actin-related protein 2 and 3) complex, Enabled (Ena)/VASP (vasodilator-stimulated phosphoprotein) proteins, Dia2, and fascin, have been implicated in filopodium formation, leading to two proposed mechanisms of filopodium formation. However, with progress in the field and the identification of several new molecular players that stimulate filopodium formation, the possible mechanisms involved need to be reevaluated. We review established and novel molecules involved in filopodium formation and dynamics and discuss possible mechanisms of filopodium formation and the possible functions that filopodia formed by distinct mechanisms may play in different cell types.

*Corresponding author. E-mail: gupton{at}mit.edu

Citation: S. L. Gupton, F. B. Gertler, Filopodia: The Fingers That Do the Walking. Sci. STKE 2007, re5 (2007).


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Ena/VASP Enabled is a highly processive actin polymerase tailored to self-assemble parallel-bundled F-actin networks with Fascin.
J. D. Winkelman, C. G. Bilancia, M. Peifer, and D. R. Kovar (2014)
PNAS 111, 4121-4126
   Abstract »    Full Text »    PDF »
Insights into the Origin of Metazoan Filopodia and Microvilli.
A. Sebe-Pedros, P. Burkhardt, N. Sanchez-Pons, S. R. Fairclough, B. F. Lang, N. King, and I. Ruiz-Trillo (2013)
Mol. Biol. Evol. 30, 2013-2023
   Abstract »    Full Text »    PDF »
The Formins FMNL1 and mDia1 Regulate Coiling Phagocytosis of Borrelia burgdorferi by Primary Human Macrophages.
X. Naj, A.-K. Hoffmann, M. Himmel, and S. Linder (2013)
Infect. Immun. 81, 1683-1695
   Abstract »    Full Text »    PDF »
Dictyostelium ACAP-A is an ArfGAP involved in cytokinesis, cell migration and actin cytoskeleton dynamics.
M. Dias, C. Blanc, N. Thazar-Poulot, S. Ben Larbi, P. Cosson, and F. Letourneur (2013)
J. Cell Sci. 126, 756-766
   Abstract »    Full Text »    PDF »
Small molecule targeting Cdc42-intersectin interaction disrupts Golgi organization and suppresses cell motility.
A. Friesland, Y. Zhao, Y.-H. Chen, L. Wang, H. Zhou, and Q. Lu (2013)
PNAS 110, 1261-1266
   Abstract »    Full Text »    PDF »
Silencing of the ARP2/3 Complex Disturbs Pancreatic Cancer Cell Migration.
H. E. RAUHALA, S. TEPPO, S. NIEMELA, and A. KALLIONIEMI (2013)
Anticancer Res 33, 45-52
   Abstract »    Full Text »    PDF »
Fascin promotes filopodia formation independent of its role in actin bundling.
J. Zanet, A. Jayo, S. Plaza, T. Millard, M. Parsons, and B. Stramer (2012)
J. Cell Biol. 197, 477-486
   Abstract »    Full Text »    PDF »
Structural basis of the myosin X PH1N-PH2-PH1C tandem as a specific and acute cellular PI(3,4,5)P3 sensor.
Q. Lu, J. Yu, J. Yan, Z. Wei, and M. Zhang (2011)
Mol. Biol. Cell 22, 4268-4278
   Abstract »    Full Text »    PDF »
{beta}3 Integrin-EGF receptor cross-talk activates p190RhoGAP in mouse mammary gland epithelial cells.
N. Balanis, M. Yoshigi, M. K. Wendt, W. P. Schiemann, and C. R. Carlin (2011)
Mol. Biol. Cell 22, 4288-4301
   Abstract »    Full Text »    PDF »
GRK5 promotes F-actin bundling and targets bundles to membrane structures to control neuronal morphogenesis.
Y. Chen, F. Wang, H. Long, Y. Chen, Z. Wu, and L. Ma (2011)
J. Cell Biol. 194, 905-920
   Abstract »    Full Text »    PDF »
Self-Assembly of Filopodia-Like Structures on Supported Lipid Bilayers.
K. Lee, J. L. Gallop, K. Rambani, and M. W. Kirschner (2010)
Science 329, 1341-1345
   Abstract »    Full Text »    PDF »
Pseudopodium-enriched atypical kinase 1 regulates the cytoskeleton and cancer progression.
Y. Wang, J. A. Kelber, H. S. T. Cao, G. T. Cantin, R. Lin, W. Wang, S. Kaushal, J. M. Bristow, T. S. Edgington, R. M. Hoffman, et al. (2010)
PNAS 107, 10920-10925
   Abstract »    Full Text »    PDF »
Cytoskeleton reorganization of spreading cells on micro-patterned islands: a functional model.
Y. Loosli, R. Luginbuehl, and J. G. Snedeker (2010)
Phil Trans R Soc A 368, 2629-2652
   Abstract »    Full Text »    PDF »
Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia.
M. Schoumacher, R. D. Goldman, D. Louvard, and D. M. Vignjevic (2010)
J. Cell Biol. 189, 541-556
   Abstract »    Full Text »    PDF »
Mechanisms of Motility in Metastasizing Cells.
M. Yilmaz and G. Christofori (2010)
Mol. Cancer Res. 8, 629-642
   Abstract »    Full Text »    PDF »
SynCAM 1 participates in axo-dendritic contact assembly and shapes neuronal growth cones.
M. Stagi, A. I. Fogel, and T. Biederer (2010)
PNAS 107, 7568-7573
   Abstract »    Full Text »    PDF »
The Motor Protein Myosin-X Transports VE-Cadherin along Filopodia To Allow the Formation of Early Endothelial Cell-Cell Contacts.
S. Almagro, C. Durmort, A. Chervin-Petinot, S. Heyraud, M. Dubois, O. Lambert, C. Maillefaud, E. Hewat, J. P. Schaal, P. Huber, et al. (2010)
Mol. Cell. Biol. 30, 1703-1717
   Abstract »    Full Text »    PDF »
Regulation of IRSp53-Dependent Filopodial Dynamics by Antagonism between 14-3-3 Binding and SH3-Mediated Localization.
J. M. Robens, L. Yeow-Fong, E. Ng, C. Hall, and E. Manser (2010)
Mol. Cell. Biol. 30, 829-844
   Abstract »    Full Text »    PDF »
Role of leukemia cell invadosome in extramedullary infiltration.
M. Stefanidakis, K. Karjalainen, D. E. Jaalouk, C. G. Gahmberg, S. O'Brien, R. Pasqualini, W. Arap, and E. Koivunen (2009)
Blood 114, 3008-3017
   Abstract »    Full Text »    PDF »
Ena/VASP: towards resolving a pointed controversy at the barbed end.
J. E. Bear and F. B. Gertler (2009)
J. Cell Sci. 122, 1947-1953
   Abstract »    Full Text »    PDF »
The Toca-1-N-WASP Complex Links Filopodial Formation to Endocytosis.
W. Bu, A. M. Chou, K. B. Lim, T. Sudhaharan, and S. Ahmed (2009)
J. Biol. Chem. 284, 11622-11636
   Abstract »    Full Text »    PDF »
Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis.
P. Hotulainen, O. Llano, S. Smirnov, K. Tanhuanpaa, J. Faix, C. Rivera, and P. Lappalainen (2009)
J. Cell Biol. 185, 323-339
   Abstract »    Full Text »    PDF »
Ultrastructural Localization of Integrin Subunits {beta}4 and {alpha}3 Within the Migrating Epithelial Tongue of In Vivo Human Wounds.
R. A. Underwood, W. G. Carter, M. L. Usui, and J. E. Olerud (2009)
Journal of Histochemistry & Cytochemistry 57, 123-142
   Abstract »    Full Text »    PDF »
Retrograde Flow and Myosin II Activity within the Leading Cell Edge Deliver F-Actin to the Lamella to Seed the Formation of Graded Polarity Actomyosin II Filament Bundles in Migrating Fibroblasts.
T. W. Anderson, A. N. Vaughan, and L. P. Cramer (2008)
Mol. Biol. Cell 19, 5006-5018
   Abstract »    Full Text »    PDF »
Eukaryotic Elongation Factor 1A2 Cooperates with Phosphatidylinositol-4 Kinase III {beta} To Stimulate Production of Filopodia through Increased Phosphatidylinositol-4,5 Bisphosphate Generation.
S. Jeganathan, A. Morrow, A. Amiri, and J. M. Lee (2008)
Mol. Cell. Biol. 28, 4549-4561
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882