Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. STKE, 28 August 2007
Vol. 2007, Issue 401, p. re6
[DOI: 10.1126/stke.4012007re6]


Structure and Function of the PB1 Domain, a Protein Interaction Module Conserved in Animals, Fungi, Amoebas, and Plants

Hideki Sumimoto1,2*, Sachiko Kamakura1,2, and Takashi Ito2,3

1Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
2CREST, Japan Science and Technology Agency, 5-3 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan.
3Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan.

Gloss: With 9 figures, four interactive structure figures, and 170 citations, this Review describes the structure-function relationships of proteins with PB1 domains. Three types of PB1-containing proteins occur: those with a type I domain, those with a type II domain, and those with both type I and type II (type I/II). The type I domain mediates interactions with proteins containing a type II domain in a canonical PB1-PB1 interaction. Interactions mediated by PB1 domains are important for organizing cell structure, for example, in polarized cells (epithelial cells and neurons) and in skeletal muscle. In addition, interactions involving PB1 domains influence the activation of mitogen-activated protein kinase signaling and activation of NADPH oxidase.

*Corresponding author. E-mail: hsumi{at}

Citation: H. Sumimoto, S. Kamakura, T. Ito, Structure and Function of the PB1 Domain, a Protein Interaction Module Conserved in Animals, Fungi, Amoebas, and Plants. Sci. STKE 2007, re6 (2007).

Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression.
D. A. Korasick, C. S. Westfall, S. G. Lee, M. H. Nanao, R. Dumas, G. Hagen, T. J. Guilfoyle, J. M. Jez, and L. C. Strader (2014)
PNAS 111, 5427-5432
   Abstract »    Full Text »    PDF »
Small-GTPase-Associated Signaling by the Guanine Nucleotide Exchange Factors CpDock180 and CpCdc24, the GTPase Effector CpSte20, and the Scaffold Protein CpBem1 in Claviceps purpurea.
A. Herrmann, B. A. M. Tillmann, J. Schurmann, M. Bolker, and P. Tudzynski (2014)
Eukaryot. Cell 13, 470-482
   Abstract »    Full Text »    PDF »
QUIRKY interacts with STRUBBELIG and PAL OF QUIRKY to regulate cell growth anisotropy during Arabidopsis gynoecium development.
C. Trehin, S. Schrempp, A. Chauvet, A. Berne-Dedieu, A.-M. Thierry, J.-E. Faure, I. Negrutiu, and P. Morel (2013)
Development 140, 4807-4817
   Abstract »    Full Text »    PDF »
Identification of Functionally Relevant Lysine Residues That Modulate Human Farnesoid X Receptor Activation.
A.-Q. Sun, Y. Luo, D. S. Backos, S. Xu, N. Balasubramaniyan, P. Reigan, and F. J. Suchy (2013)
Mol. Pharmacol. 83, 1078-1086
   Abstract »    Full Text »    PDF »
The WD40 protein Morg1 facilitates Par6-aPKC binding to Crb3 for apical identity in epithelial cells.
J. Hayase, S. Kamakura, Y. Iwakiri, Y. Yamaguchi, T. Izaki, T. Ito, and H. Sumimoto (2013)
J. Cell Biol. 200, 635-650
   Abstract »    Full Text »    PDF »
Atypical Protein Kinase C Phosphorylates Par6 and Facilitates Transforming Growth Factor {beta}-Induced Epithelial-to-Mesenchymal Transition.
A. Gunaratne, B. L. Thai, and G. M. Di Guglielmo (2013)
Mol. Cell. Biol. 33, 874-886
   Abstract »    Full Text »    PDF »
CLUMPED CHLOROPLASTS 1 is required for plastid separation in Arabidopsis.
Y. Yang, T. L. Sage, Y. Liu, T. R. Ahmad, W. F. Marshall, S.-H. Shiu, J. E. Froehlich, K. M. Imre, and K. W. Osteryoung (2011)
PNAS 108, 18530-18535
   Abstract »    Full Text »    PDF »
Inositol Polyphosphate 5-Phosphatase7 Regulates the Production of Reactive Oxygen Species and Salt Tolerance in Arabidopsis.
Y. Kaye, Y. Golani, Y. Singer, Y. Leshem, G. Cohen, M. Ercetin, G. Gillaspy, and A. Levine (2011)
Plant Physiology 157, 229-241
   Abstract »    Full Text »    PDF »
Atypical protein kinase C controls sea urchin ciliogenesis.
G. Pruliere, J. Cosson, S. Chevalier, C. Sardet, and J. Chenevert (2011)
Mol. Biol. Cell 22, 2042-2053
   Abstract »    Full Text »    PDF »
Ubiquitin-specific protease 4 is inhibited by its ubiquitin-like domain.
M. P. A. Luna-Vargas, A. C. Faesen, W. J. van Dijk, M. Rape, A. Fish, and T. K. Sixma (2011)
EMBO Rep. 12, 365-372
   Abstract »    Full Text »    PDF »
Molecular Basis of Wnt Activation via the DIX Domain Protein Ccd1.
Y.-T. Liu, Q.-J. Dan, J. Wang, Y. Feng, L. Chen, J. Liang, Q. Li, S.-C. Lin, Z.-X. Wang, and J.-W. Wu (2011)
J. Biol. Chem. 286, 8597-8608
   Abstract »    Full Text »    PDF »
A Conserved Region between the TPR and Activation Domains of p67phox Participates in Activation of the Phagocyte NADPH Oxidase.
Y. Maehara, K. Miyano, S. Yuzawa, R. Akimoto, R. Takeya, and H. Sumimoto (2010)
J. Biol. Chem. 285, 31435-31445
   Abstract »    Full Text »    PDF »
NBR1 is a new PB1 signalling adapter in Th2 differentiation and allergic airway inflammation in vivo.
J.-Q. Yang, H. Liu, M. T. Diaz-Meco, and J. Moscat (2010)
EMBO J. 29, 3421-3433
   Abstract »    Full Text »    PDF »
Legume Transcription Factor Genes: What Makes Legumes So Special?.
M. Libault, T. Joshi, V. A. Benedito, D. Xu, M. K. Udvardi, and G. Stacey (2009)
Plant Physiology 151, 991-1001
   Full Text »    PDF »
NMR Structure of the Heterodimer of Bem1 and Cdc24 PB1 Domains from Saccharomyces Cerevisiae.
K. Ogura, T. Tandai, S. Yoshinaga, Y. Kobashigawa, H. Kumeta, T. Ito, H. Sumimoto, and F. Inagaki (2009)
J. Biochem. 146, 317-325
   Abstract »    Full Text »    PDF »
Homogeneous Time-Resolved Fluorescence Resonance Energy Transfer Assay for Measurement of Phox/Bem1p (PB1) Domain Heterodimerization.
K. Nakamura, J. S. Zawistowski, M. A. Hughes, J. Z. Sexton, L.-A. Yeh, G. L. Johnson, and J. E. Scott (2008)
J Biomol Screen 13, 396-405
   Abstract »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882