Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. Signal., 12 January 2010
Vol. 3, Issue 104, p. re1
[DOI: 10.1126/scisignal.3104re1]

REVIEWS

Basal Release of ATP: An Autocrine-Paracrine Mechanism for Cell Regulation

Ross Corriden and Paul A. Insel*

Departments of Pharmacology and Medicine, University of California, San Diego, La Jolla, CA 92093, USA.

Gloss: Virtually every type of eukaryotic cell is regulated by adenosine triphosphate (ATP) and other nucleotides, such as uridine triphosphate (UTP), that the cells release themselves (autocrine signaling) or that are released by neighboring cells (paracrine signaling). Signaling in response to released nucleotides occurs through the activation of plasma membrane–localized P2 receptors: the P2X ion channels and the P2Y heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptors. Release of ATP and alteration of cellular function also occur under "basal" conditions. Such basal release of ATP, which can be increased by minimal perturbation of cells through physical or chemical stimuli, influences a wide array of physiological events, including tissue blood flow, ion transport, growth and metastatic potential of malignant cells, endocrine and neuronal activity, neural development, musculoskeletal and renal function, stem cell proliferation, and response to pathogens. This Review, which contains two figures and 216 references, discusses the diverse array of receptors for ATP (and its major hydrolytic product adenosine) and the range of enzymes (including ecto–adenosine triphosphatases and kinases) that regulate extracellular concentrations of ATP, which create a highly versatile and tightly regulated system for the regulation of cell and tissue function by extracellular ATP that is derived from intracellular pools of nucleotides.

* Corresponding author. E-mail, pinsel{at}ucsd.edu

Citation: R. Corriden, P. A. Insel, Basal Release of ATP: An Autocrine-Paracrine Mechanism for Cell Regulation. Sci. Signal. 3, re1 (2010).


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Hepatic Overexpression of ATP Synthase {beta} Subunit Activates PI3K/Akt Pathway to Ameliorate Hyperglycemia of Diabetic Mice.
C. Wang, Z. Chen, S. Li, Y. Zhang, S. Jia, J. Li, Y. Chi, Y. Miao, Y. Guan, and J. Yang (2014)
Diabetes 63, 947-959
   Abstract »    Full Text »    PDF »
Purinergic and muscarinic modulation of ATP release from the urothelium and its paracrine actions.
G. Sui, C. H. Fry, B. Montgomery, M. Roberts, R. Wu, and C. Wu (2014)
Am J Physiol Renal Physiol 306, F286-F298
   Abstract »    Full Text »    PDF »
Adenosine-A3 receptors in neutrophil microdomains promote the formation of bacteria-tethering cytonemes.
R. Corriden, T. Self, K. Akong-Moore, V. Nizet, B. Kellam, S. J. Briddon, and S. J. Hill (2013)
EMBO Rep. 14, 726-732
   Abstract »    Full Text »    PDF »
Flow detection and calcium signalling in vascular endothelial cells.
J. Ando and K. Yamamoto (2013)
Cardiovasc Res 99, 260-268
   Abstract »    Full Text »    PDF »
Extracellular nucleotides inhibit oxalate transport by human intestinal Caco-2-BBe cells through PKC-{delta} activation.
R. Amin, S. Sharma, S. Ratakonda, and H. A. Hassan (2013)
Am J Physiol Cell Physiol 305, C78-C89
   Abstract »    Full Text »    PDF »
Hydrolysis of Extracellular ATP by Ectonucleoside Triphosphate Diphosphohydrolase (ENTPD) Establishes the Set Point for Fibrotic Activity of Cardiac Fibroblasts.
D. Lu and P. A. Insel (2013)
J. Biol. Chem. 288, 19040-19049
   Abstract »    Full Text »    PDF »
On the role of ATP release, ectoATPase activity, and extracellular ADP in the regulatory volume decrease of Huh-7 human hepatoma cells.
M. V. Espelt, F. de Tezanos Pinto, C. L. Alvarez, G. S. Alberti, J. Incicco, M. F. L. Denis, C. Davio, and P. J. Schwarzbaum (2013)
Am J Physiol Cell Physiol 304, C1013-C1026
   Abstract »    Full Text »    PDF »
Detecting adenosine triphosphate in the pericellular space.
S. Falzoni, G. Donvito, and F. Di Virgilio (2013)
Interface Focus 3, 20120101
   Abstract »    Full Text »    PDF »
Cav1.1 controls frequency-dependent events regulating adult skeletal muscle plasticity.
G. Jorquera, F. Altamirano, A. Contreras-Ferrat, G. Almarza, S. Buvinic, V. Jacquemond, E. Jaimovich, and M. Casas (2013)
J. Cell Sci. 126, 1189-1198
   Abstract »    Full Text »    PDF »
High-tailing it to the apical surface. Focus on "Apical targeting of the P2Y4 receptor is directed by hydrophobic and basic residues in the cytoplasmic tail".
O. A. Weisz (2013)
Am J Physiol Cell Physiol 304, C226-C227
   Full Text »    PDF »
Activated hepatic stellate cells upregulate transcription of ecto-5'-nucleotidase/CD73 via specific SP1 and SMAD promoter elements.
M. Fausther, N. Sheung, Y. Saiman, M. B. Bansal, and J. A. Dranoff (2012)
Am J Physiol Gastrointest Liver Physiol 303, G904-G914
   Abstract »    Full Text »    PDF »
Ectopic ATP Synthase Blockade Suppresses Lung Adenocarcinoma Growth by Activating the Unfolded Protein Response.
H.-Y. Chang, H.-C. Huang, T.-C. Huang, P.-C. Yang, Y.-C. Wang, and H.-F. Juan (2012)
Cancer Res. 72, 4696-4706
   Abstract »    Full Text »    PDF »
Immunoregulation through extracellular nucleotides.
L. Vitiello, S. Gorini, G. Rosano, and A. la Sala (2012)
Blood 120, 511-518
   Abstract »    Full Text »    PDF »
ATP released from cardiac fibroblasts via connexin hemichannels activates profibrotic P2Y2 receptors.
D. Lu, S. Soleymani, R. Madakshire, and P. A. Insel (2012)
FASEB J 26, 2580-2591
   Abstract »    Full Text »    PDF »
The ATP-P2X7 Signaling Axis Is Dispensable for Obesity-Associated Inflammasome Activation in Adipose Tissue.
S. Sun, S. Xia, Y. Ji, S. Kersten, and L. Qi (2012)
Diabetes 61, 1471-1478
   Abstract »    Full Text »    PDF »
Glucocorticoids Sensitize the Innate Immune System through Regulation of the NLRP3 Inflammasome.
J. M. Busillo, K. M. Azzam, and J. A. Cidlowski (2011)
J. Biol. Chem. 286, 38703-38713
   Abstract »    Full Text »    PDF »
Purinergic regulation of high-glucose-induced caspase-1 activation in the rat retinal Muller cell line rMC-1.
K. E. Trueblood, S. Mohr, and G. R. Dubyak (2011)
Am J Physiol Cell Physiol 301, C1213-C1223
   Abstract »    Full Text »    PDF »
Regulation of renal NaCl and water transport by the ATP/UTP/P2Y2 receptor system.
V. Vallon and T. Rieg (2011)
Am J Physiol Renal Physiol 301, F463-F475
   Abstract »    Full Text »    PDF »
Activation of P2Y1 and P2Y2 receptors induces chloride secretion via calcium-activated chloride channels in kidney inner medullary collecting duct cells.
M. Rajagopal, P. P. Kathpalia, S. V. Thomas, and A. C. Pao (2011)
Am J Physiol Renal Physiol 301, F544-F553
   Abstract »    Full Text »    PDF »
Extracellular ATP acts on P2Y2 purinergic receptors to facilitate HIV-1 infection.
C. Seror, M.-T. Melki, F. Subra, S. Q. Raza, M. Bras, H. Saidi, R. Nardacci, L. Voisin, A. Paoletti, F. Law, et al. (2011)
J. Exp. Med. 208, 1823-1834
   Abstract »    Full Text »    PDF »
Pannexin 3 functions as an ER Ca2+ channel, hemichannel, and gap junction to promote osteoblast differentiation.
M. Ishikawa, T. Iwamoto, T. Nakamura, A. Doyle, S. Fukumoto, and Y. Yamada (2011)
J. Cell Biol. 193, 1257-1274
   Abstract »    Full Text »    PDF »
Circadian Regulation of ATP Release in Astrocytes.
L. Marpegan, A. E. Swanstrom, K. Chung, T. Simon, P. G. Haydon, S. K. Khan, A. C. Liu, E. D. Herzog, and C. Beaule (2011)
J. Neurosci. 31, 8342-8350
   Abstract »    Full Text »    PDF »
Identification of P2X3 and P2X7 Purinergic Receptors Activated by ATP in Rat Lacrimal Gland.
R. R. Hodges, J. Vrouvlianis, R. Scott, and D. A. Dartt (2011)
Invest. Ophthalmol. Vis. Sci. 52, 3254-3263
   Abstract »    Full Text »    PDF »
ATP Inhibits the Generation and Function of Regulatory T Cells Through the Activation of Purinergic P2X Receptors.
U. Schenk, M. Frascoli, M. Proietti, R. Geffers, E. Traggiai, J. Buer, C. Ricordi, A. M. Westendorf, and F. Grassi (2011)
Science Signaling 4, ra12
   Abstract »    Full Text »    PDF »
P2Y1 and P2Y13 purinergic receptors mediate Ca2+ signaling and proliferative responses in pulmonary artery vasa vasorum endothelial cells.
T. Lyubchenko, H. Woodward, K. D. Veo, N. Burns, H. Nijmeh, G. A. Liubchenko, K. R. Stenmark, and E. V. Gerasimovskaya (2011)
Am J Physiol Cell Physiol 300, C266-C275
   Abstract »    Full Text »    PDF »
Receptor regulation of osmolyte homeostasis in neural cells.
S. K. Fisher, A. M. Heacock, R. F. Keep, and D. J. Foster (2010)
J. Physiol. 588, 3355-3364
   Abstract »    Full Text »    PDF »
Purinergic Control of Neutrophil Activation.
F. Grassi (2010)
J Mol Cell Biol 2, 176-177
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882