Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. STKE, 18 April 2006
Vol. 2006, Issue 331, p. re2
[DOI: 10.1126/stke.3312006re2]


Fanciful FRET

Steven S. Vogel*, Christopher Thaler, and Srinagesh V. Koushik

National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Laboratory of Molecular Physiology, 5625 Fishers Lane, Bethesda, MD 20892, USA.

Gloss: Förster resonance energy transfer (FRET) is used to measure protein-protein interactions in living cells. When FRET occurs, a "donor" fluorophore is excited by the absorption of a photon, and that energy is transferred by a nonradiative mechanism to a nearby acceptor molecule. The fraction of energy-transfer events relative to donor excitation events is called the FRET efficiency. It has a steep dependence on the separation distance between the donor and acceptor. Proteins of interest tagged with spectral variants of green fluorescent protein (GFP) can be readily used for FRET studies in living cells. The proper interpretation of FRET measurements, however, requires an understanding of the limitations of the numerous methods used for measuring FRET, as well as consideration of the subtleties of FRET theory, particularly its dependence on the abundance of donors and acceptors. This review highlights aspects of the acquisition of FRET measurements, and of FRET theory, that are vital for proper interpretation. The adoption of "standards" with known FRET efficiencies is a first step toward eliminating erroneous interpretations of FRET experiments due to errors in the accuracy and precision of FRET measurements.

*Corresponding author. E-mail, stevevog{at}

Citation: S. S. Vogel, C. Thaler, S. V. Koushik, Fanciful FRET. Sci. STKE 2006, re2 (2006).

Segregation of Family A G Protein-Coupled Receptor Protomers in the Plasma Membrane.
A. Gavalas, T.-H. Lan, Q. Liu, I. R. Correa Jr., J. A. Javitch, and N. A. Lambert (2013)
Mol. Pharmacol. 84, 346-352
   Abstract »    Full Text »    PDF »
Smoothened Oligomerization/Higher Order Clustering in Lipid Rafts Is Essential for High Hedgehog Activity Transduction.
D. Shi, X. Lv, Z. Zhang, X. Yang, Z. Zhou, L. Zhang, and Y. Zhao (2013)
J. Biol. Chem. 288, 12605-12614
   Abstract »    Full Text »    PDF »
A critical survey of methods to detect plasma membrane rafts.
E. Klotzsch and G. J. Schutz (2012)
Phil Trans R Soc B 368, 20120033
   Abstract »    Full Text »    PDF »
A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors.
E. Doumazane, P. Scholler, J. M. Zwier, E. Trinquet, P. Rondard, and J.-P. Pin (2011)
FASEB J 25, 66-77
   Abstract »    Full Text »    PDF »
Ca2+-Activated K+ Channels: From Protein Complexes to Function.
H. Berkefeld, B. Fakler, and U. Schulte (2010)
Physiol Rev 90, 1437-1459
   Abstract »    Full Text »    PDF »
Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues.
D. M. Chudakov, M. V. Matz, S. Lukyanov, and K. A. Lukyanov (2010)
Physiol Rev 90, 1103-1163
   Abstract »    Full Text »    PDF »
Direct Interaction of GABAB Receptors with M2 Muscarinic Receptors Enhances Muscarinic Signaling.
S. B. Boyer, S. M. Clancy, M. Terunuma, R. Revilla-Sanchez, S. M. Thomas, S. J. Moss, and P. A. Slesinger (2009)
J. Neurosci. 29, 15796-15809
   Abstract »    Full Text »    PDF »
G-protein-coupled receptor oligomers: two or more for what? Lessons from mGlu and GABAB receptors.
J.- P. Pin, L. Comps-Agrar, D. Maurel, C. Monnier, M. L. Rives, E. Trinquet, J. Kniazeff, P. Rondard, and L. Prezeau (2009)
J. Physiol. 587, 5337-5344
   Abstract »    Full Text »    PDF »
Accuracy and precision in quantitative fluorescence microscopy.
J. C. Waters (2009)
J. Cell Biol. 185, 1135-1148
   Abstract »    Full Text »    PDF »
A Modified Acetylcholine Receptor {delta}-Subunit Enables a Null Mutant to Survive Beyond Sexual Maturation.
K. E. Epley, J. M. Urban, T. Ikenaga, and F. Ono (2008)
J. Neurosci. 28, 13223-13231
   Abstract »    Full Text »    PDF »
Intermolecular Interactions between Retroviral Gag Proteins in the Nucleus.
S. P. Kenney, T. L. Lochmann, C. L. Schmid, and L. J. Parent (2008)
J. Virol. 82, 683-691
   Abstract »    Full Text »    PDF »
Visualization of AP-1 NF-{kappa}B ternary complexes in living cells by using a BiFC-based FRET.
Y. J. Shyu, C. D. Suarez, and C.-D. Hu (2008)
PNAS 105, 151-156
   Abstract »    Full Text »    PDF »
Forster Transfer Recovery Reveals That Phospholamban Exchanges Slowly From Pentamers but Rapidly From the SERCA Regulatory Complex.
S. L. Robia, K. S. Campbell, E. M. Kelly, Z. Hou, D. L. Winters, and D. D. Thomas (2007)
Circ. Res. 101, 1123-1129
   Abstract »    Full Text »    PDF »
FRET-detectable interactions between the ARE binding proteins, HuR and p37AUF1.
P. S. David, R. Tanveer, and J. D. Port (2007)
RNA 13, 1453-1468
   Abstract »    Full Text »    PDF »
Evidence for association of GABAB receptors with Kir3 channels and regulators of G protein signalling (RGS4) proteins.
C. E. Fowler, P. Aryal, K. F. Suen, and P. A. Slesinger (2007)
J. Physiol. 580, 51-65
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882