Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Biol. Chem. 276 (38): 35847-35853

© 2001 by The American Society for Biochemistry and Molecular Biology, Inc.

The Notch Intracellular Domain Is Ubiquitinated and Negatively Regulated by the Mammalian Sel-10 Homolog*

Camilla ÖbergDagger , Jinhe Li§, Adele Pauley§, Elisabeth WolfDagger , Mark Gurney§, and Urban LendahlDagger ||

From the Dagger  Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, SE-171 77 Stockholm, Sweden and the § Department of Neurobiology, Pharmacia Corporation, Kalamazoo, Michigan 49001

The Caenorhabditis elegans sel-10 protein is structurally similar to E3 ubiquitin ligases and is a negative regulator of Notch (lin-12) and presenilin signaling. In this report, we characterize the mammalian Sel-10 homolog (mSel-10) and analyze its effects on Notch signaling. We find that mSel-10 localizes to the cell nucleus, and that it physically interacts with the Notch 1 intracellular domain (IC) and reduces Notch 1 IC-mediated activation of the HES 1 promoter. Notch 1 IC is ubiquitinated by mSel-10, and ubiquitination requires the presence of the most carboxyl-terminal region of the Notch IC, including the PEST domain. In the presence of the proteasome inhibitor MG132, the amount of Notch 1 IC and its level of ubiquitination are increased. Interestingly, this accumulation of Notch 1 IC in the presence of MG132 is accompanied by decreased activation of the HES 1 promoter, suggesting that ubiquitinated Notch 1 IC is a less potent transactivator. Finally, we show that mSel-10 itself is ubiquitinated and degraded by the proteasome. In conclusion, these data reveal the importance of ubiquitination and proteasome-mediated degradation for the activity and turnover of Notch ICs, and demonstrate that mSel-10 plays a key role in this process.

* This work was supported by grants from Cancerfonden, EU Project QLRT-1999-30934 (to U. L.), and the Foundation for Strategic Research (to C. Ö.).The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Present address: deCode Genetics, 110 Reykjavik, Iceland.

|| To whom correspondence should be addressed. Tel.: 46-8-7287323; Fax: 46-8-348135.

Copyright © 2001 by The American Society for Biochemistry and Molecular Biology, Inc.

Notch signaling: switching an oncogene to a tumor suppressor.
C. Lobry, P. Oh, M. R. Mansour, A. T. Look, and I. Aifantis (2014)
Blood 123, 2451-2459
   Abstract »    Full Text »    PDF »
Cell-cycle regulation of NOTCH signaling during C. elegans vulval development.
S. Nusser-Stein, A. Beyer, I. Rimann, M. Adamczyk, N. Piterman, A. Hajnal, and J. Fisher (2014)
Mol Syst Biol 8, 618
   Abstract »    Full Text »    PDF »
F-box and WD Repeat Domain-containing-7 (Fbxw7) Protein Targets Endoplasmic Reticulum-anchored Osteogenic and Chondrogenic Transcriptional Factors for Degradation.
K. Yumimoto, M. Matsumoto, I. Onoyama, K. Imaizumi, and K. I. Nakayama (2013)
J. Biol. Chem. 288, 28488-28502
   Abstract »    Full Text »    PDF »
Thyroid dysfunction and tyrosine kinase inhibitors in renal cell carcinoma.
L. Bianchi, L. Rossi, F. Tomao, A. Papa, F. Zoratto, and S. Tomao (2013)
Endocr. Relat. Cancer 20, R233-R245
   Abstract »    Full Text »    PDF »
Fkbp1a controls ventricular myocardium trabeculation and compaction by regulating endocardial Notch1 activity.
H. Chen, W. Zhang, X. Sun, M. Yoshimoto, Z. Chen, W. Zhu, J. Liu, Y. Shen, W. Yong, D. Li, et al. (2013)
Development 140, 1946-1957
   Abstract »    Full Text »    PDF »
A Targeted In Vivo RNAi Screen Reveals Deubiquitinases as New Regulators of Notch Signaling.
J. Zhang, M. Liu, Y. Su, J. Du, and A. J. Zhu (2012)
g3 2, 1563-1575
   Abstract »    Full Text »    PDF »
SEL-10/Fbw7-dependent negative feedback regulation of LIN-45/Braf signaling in C. elegans via a conserved phosphodegron.
C. de la Cova and I. Greenwald (2012)
Genes & Dev. 26, 2524-2535
   Abstract »    Full Text »    PDF »
Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma.
M. J. Kiel, T. Velusamy, B. L. Betz, L. Zhao, H. G. Weigelin, M. Y. Chiang, D. R. Huebner-Chan, N. G. Bailey, D. T. Yang, G. Bhagat, et al. (2012)
J. Exp. Med. 209, 1553-1565
   Abstract »    Full Text »    PDF »
Presenilin-2 regulates the degradation of RBP-Jk protein through p38 mitogen-activated protein kinase.
S.-M. Kim, M.-Y. Kim, E.-J. Ann, J.-S. Mo, J.-H. Yoon, and H.-S. Park (2012)
J. Cell Sci. 125, 1296-1308
   Abstract »    Full Text »    PDF »
Dual Regulation of Notch1 Signaling Pathway by Adaptor Protein Fe65.
M.-Y. Kim, J.-S. Mo, E.-J. Ann, J.-H. Yoon, and H.-S. Park (2012)
J. Biol. Chem. 287, 4690-4701
   Abstract »    Full Text »    PDF »
Sequential mutations in Notch1, Fbxw7, and Tp53 in radiation-induced mouse thymic lymphomas.
K.-Y. Jen, I. Y. Song, K. L. Banta, D. Wu, J.-H. Mao, and A. Balmain (2012)
Blood 119, 805-809
   Abstract »    Full Text »    PDF »
Emerging roles of the FBW7 tumour suppressor in stem cell differentiation.
Z. Wang, H. Inuzuka, H. Fukushima, L. Wan, D. Gao, S. Shaik, F. H. Sarkar, and W. Wei (2012)
EMBO Rep. 13, 36-43
   Abstract »    Full Text »    PDF »
Inhibition of Ubiquitin Ligase F-box and WD Repeat Domain-containing 7{alpha} (Fbw7{alpha}) Causes Hepatosteatosis through Kruppel-like Factor 5 (KLF5)/Peroxisome Proliferator-activated Receptor {gamma}2 (PPAR{gamma}2) Pathway but Not SREBP-1c Protein in Mice.
S. Kumadaki, T. Karasawa, T. Matsuzaka, M. Ema, Y. Nakagawa, M. Nakakuki, R. Saito, N. Yahagi, H. Iwasaki, H. Sone, et al. (2011)
J. Biol. Chem. 286, 40835-40846
   Abstract »    Full Text »    PDF »
Notch signaling: simplicity in design, versatility in function.
E. R. Andersson, R. Sandberg, and U. Lendahl (2011)
Development 138, 3593-3612
   Abstract »    Full Text »    PDF »
Hierarchical Phosphorylation within the Ankyrin Repeat Domain Defines a Phosphoregulatory Loop That Regulates Notch Transcriptional Activity.
P. Ranganathan, R. Vasquez-Del Carpio, F. M. Kaplan, H. Wang, A. Gupta, J. D. VanWye, and A. J. Capobianco (2011)
J. Biol. Chem. 286, 28844-28857
   Abstract »    Full Text »    PDF »
Regulation of Notch1 signaling by the APP intracellular domain facilitates degradation of the Notch1 intracellular domain and RBP-Jk.
M.-Y. Kim, J.-S. Mo, E.-J. Ann, J.-H. Yoon, J. Jung, Y.-H. Choi, S.-M. Kim, H.-Y. Kim, J.-S. Ahn, H. Kim, et al. (2011)
J. Cell Sci. 124, 1831-1843
   Abstract »    Full Text »    PDF »
RUNX3 Maintains the Mesenchymal Phenotype after Termination of the Notch Signal.
Y. Fu, A. C. Y. Chang, M. Fournier, L. Chang, K. Niessen, and A. Karsan (2011)
J. Biol. Chem. 286, 11803-11813
   Abstract »    Full Text »    PDF »
Nucleolar Targeting of the Fbw7 Ubiquitin Ligase by a Pseudosubstrate and Glycogen Synthase Kinase 3.
M. Welcker, E. A. Larimore, L. Frappier, and B. E. Clurman (2011)
Mol. Cell. Biol. 31, 1214-1224
   Abstract »    Full Text »    PDF »
Notch-dependent expression of the archipelago ubiquitin ligase subunit in the Drosophila eye.
S. C. Nicholson, B. N. Nicolay, M. V. Frolov, and K. H. Moberg (2011)
Development 138, 251-260
   Abstract »    Full Text »    PDF »
Serum- and glucocorticoid-inducible kinase 1 (SGK1) controls Notch1 signaling by downregulation of protein stability through Fbw7 ubiquitin ligase.
J.-S. Mo, E.-J. Ann, J.-H. Yoon, J. Jung, Y.-H. Choi, H.-Y. Kim, J.-S. Ahn, S.-M. Kim, M.-Y. Kim, J.-A. Hong, et al. (2011)
J. Cell Sci. 124, 100-112
   Abstract »    Full Text »    PDF »
MicroRNA-223 Regulates Cyclin E Activity by Modulating Expression of F-box and WD-40 Domain Protein 7.
Y. Xu, T. Sengupta, L. Kukreja, and A. C. Minella (2010)
J. Biol. Chem. 285, 34439-34446
   Abstract »    Full Text »    PDF »
Prognostic implications of NOTCH1 and FBXW7 mutations in adult acute T-lymphoblastic leukemia.
C. D. Baldus, J. Thibaut, N. Goekbuget, A. Stroux, C. Schlee, M. Mossner, T. Burmeister, S. Schwartz, C. D. Bloomfield, D. Hoelzer, et al. (2009)
Haematologica 94, 1383-1390
   Abstract »    Full Text »    PDF »
Requirement of Split ends for Epigenetic Regulation of Notch Signal-Dependent Genes during Infection-Induced Hemocyte Differentiation.
L. H. Jin, J. K. Choi, B. Kim, H. S. Cho, J. Kim, J. Kim-Ha, and Y.-J. Kim (2009)
Mol. Cell. Biol. 29, 1515-1525
   Abstract »    Full Text »    PDF »
A Phosphorylation Cascade Controls the Degradation of Active SREBP1.
M. T. Bengoechea-Alonso and J. Ericsson (2009)
J. Biol. Chem. 284, 5885-5895
   Abstract »    Full Text »    PDF »
Notch and Vascular Smooth Muscle Cell Phenotype.
D. Morrow, S. Guha, C. Sweeney, Y. Birney, T. Walshe, C. O'Brien, D. Walls, E. M. Redmond, and P. A. Cahill (2008)
Circ. Res. 103, 1370-1382
   Abstract »    Full Text »    PDF »
Molecular profile of endothelial invasion of three-dimensional collagen matrices: insights into angiogenic sprout induction in wound healing.
S.-C. Su, E. A. Mendoza, H.-i. Kwak, and K. J. Bayless (2008)
Am J Physiol Cell Physiol 295, C1215-C1229
   Abstract »    Full Text »    PDF »
Isoform- and cell cycle-dependent substrate degradation by the Fbw7 ubiquitin ligase.
J. E. Grim, M. P. Gustafson, R. K. Hirata, A. C. Hagar, J. Swanger, M. Welcker, H. C. Hwang, J. Ericsson, D. W. Russell, and B. E. Clurman (2008)
J. Cell Biol. 181, 913-920
   Abstract »    Full Text »    PDF »
The molecular logic of Notch signaling - a structural and biochemical perspective.
W. R. Gordon, K. L. Arnett, and S. C. Blacklow (2008)
J. Cell Sci. 121, 3109-3119
   Abstract »    Full Text »    PDF »
Proteasomal Regulation of the Proliferation vs. Meiotic Entry Decision in the Caenorhabditis elegans Germ Line.
L. D. MacDonald, A. Knox, and D. Hansen (2008)
Genetics 180, 905-920
   Abstract »    Full Text »    PDF »
Cyclin E phosphorylation regulates cell proliferation in hematopoietic and epithelial lineages in vivo.
A. C. Minella, K. R. Loeb, A. Knecht, M. Welcker, B. J. Varnum-Finney, I. D. Bernstein, J. M. Roberts, and B. E. Clurman (2008)
Genes & Dev. 22, 1677-1689
   Abstract »    Full Text »    PDF »
Zfp64 participates in Notch signaling and regulates differentiation in mesenchymal cells.
K. Sakamoto, Y. Tamamura, K.-i. Katsube, and A. Yamaguchi (2008)
J. Cell Sci. 121, 1613-1623
   Abstract »    Full Text »    PDF »
Downregulation by lipopolysaccharide of Notch signaling, via nitric oxide.
M.-Y. Kim, J.-H. Park, J.-S. Mo, E.-J. Ann, S.-O. Han, S.-H. Baek, K.-J. Kim, S.-Y. Im, J.-W. Park, E.-J. Choi, et al. (2008)
J. Cell Sci. 121, 1466-1476
   Abstract »    Full Text »    PDF »
SCFCdc4 acts antagonistically to the PGC-1{alpha} transcriptional coactivator by targeting it for ubiquitin-mediated proteolysis.
B. L. Olson, M. B. Hock, S. Ekholm-Reed, J. A. Wohlschlegel, K. K. Dev, A. Kralli, and S. I. Reed (2008)
Genes & Dev. 22, 252-264
   Abstract »    Full Text »    PDF »
Kaposi's sarcoma herpesvirus-encoded latency-associated nuclear antigen stabilizes intracellular activated Notch by targeting the Sel10 protein.
K. Lan, S. C. Verma, M. Murakami, B. Bajaj, R. Kaul, and E. S. Robertson (2007)
PNAS 104, 16287-16292
   Abstract »    Full Text »    PDF »
Tip60 Histone Acetyltransferase Acts as a Negative Regulator of Notch1 Signaling by Means of Acetylation.
M.-Y. Kim, E.-J. Ann, J.-Y. Kim, J.-S. Mo, J.-H. Park, S.-Y. Kim, M.-S. Seo, and H.-S. Park (2007)
Mol. Cell. Biol. 27, 6506-6519
   Abstract »    Full Text »    PDF »
The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia.
B. J. Thompson, S. Buonamici, M. L. Sulis, T. Palomero, T. Vilimas, G. Basso, A. Ferrando, and I. Aifantis (2007)
J. Exp. Med. 204, 1825-1835
   Abstract »    Full Text »    PDF »
FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to {gamma}-secretase inhibitors.
J. O'Neil, J. Grim, P. Strack, S. Rao, D. Tibbitts, C. Winter, J. Hardwick, M. Welcker, J. P. Meijerink, R. Pieters, et al. (2007)
J. Exp. Med. 204, 1813-1824
   Abstract »    Full Text »    PDF »
Integrin-Linked Kinase Controls Notch1 Signaling by Down-Regulation of Protein Stability through Fbw7 Ubiquitin Ligase.
J.-S. Mo, M.-Y. Kim, S.-O. Han, I.-S. Kim, E.-J. Ann, K. S. Lee, M.-S. Seo, J.-Y. Kim, S.-C. Lee, J.-W. Park, et al. (2007)
Mol. Cell. Biol. 27, 5565-5574
   Abstract »    Full Text »    PDF »
Notch signaling in the developing cardiovascular system.
K. Niessen and A. Karsan (2007)
Am J Physiol Cell Physiol 293, C1-C11
   Abstract »    Full Text »    PDF »
The Tumor Suppressor Gene hCDC4 Is Frequently Mutated in Human T-Cell Acute Lymphoblastic Leukemia with Functional Consequences for Notch Signaling.
A. Malyukova, T. Dohda, N. von der Lehr, S. Akhondi, M. Corcoran, M. Heyman, C. Spruck, D. Grander, U. Lendahl, and O. Sangfelt (2007)
Cancer Res. 67, 5611-5616
   Abstract »    Full Text »    PDF »
Fbw7 Isoform Interaction Contributes to Cyclin E Proteolysis.
W. Zhang and D. M. Koepp (2006)
Mol. Cancer Res. 4, 935-943
   Abstract »    Full Text »    PDF »
The GATA2 transcription factor negatively regulates the proliferation of neuronal progenitors.
A. El Wakil, C. Francius, A. Wolff, J. Pleau-Varet, and J. Nardelli (2006)
Development 133, 2155-2165
   Abstract »    Full Text »    PDF »
Role of Ubiquitylation in Cellular Membrane Transport.
O. Staub and D. Rotin (2006)
Physiol Rev 86, 669-707
   Abstract »    Full Text »    PDF »
Notch Signaling.
L. Miele (2006)
Clin. Cancer Res. 12, 1074-1079
   Full Text »    PDF »
The interplay between DSL proteins and ubiquitin ligases in Notch signaling.
C. Pitsouli and C. Delidakis (2005)
Development 132, 4041-4050
   Abstract »    Full Text »    PDF »
Control of Genomic Instability and Epithelial Tumor Development by the p53-Fbxw7/Cdc4 Pathway.
J. Perez-Losada, J.-H. Mao, and A. Balmain (2005)
Cancer Res. 65, 6488-6492
   Abstract »    Full Text »    PDF »
The ubiquitin ligase Drosophila Mind bomb promotes Notch signaling by regulating the localization and activity of Serrate and Delta.
E. C. Lai, F. Roegiers, X. Qin, Y. N. Jan, and G. M. Rubin (2005)
Development 132, 2319-2332
   Abstract »    Full Text »    PDF »
Ubiquitin Chains in the Ladder of MAPK Signaling.
A. Laine and Z. Ronai (2005)
Sci. STKE 2005, re5
   Abstract »    Full Text »    PDF »
Deregulation of Cyclin E in Cancer.
S. I. Reed (2005)
Am. Assoc. Cancer Res. Educ. Book 2005, 53-56
   Full Text »    PDF »
Normal Immune System Development in Mice Lacking the Deltex-1 RING Finger Domain.
S. Storck, F. Delbos, N. Stadler, C. Thirion-Delalande, F. Bernex, C. Verthuy, P. Ferrier, J.-C. Weill, and C.-A. Reynaud (2005)
Mol. Cell. Biol. 25, 1437-1445
   Abstract »    Full Text »    PDF »
Notch4-induced inhibition of endothelial sprouting requires the ankyrin repeats and involves signaling through RBP-J{kappa}.
F. MacKenzie, P. Duriez, B. Larrivee, L. Chang, I. Pollet, F. Wong, C. Yip, and A. Karsan (2004)
Blood 104, 1760-1768
   Abstract »    Full Text »    PDF »
The Caenorhabditis elegans F-box protein SEL-10 promotes female development and may target FEM-1 and FEM-3 for degradation by the proteasome.
S. Jager, H. T. Schwartz, H. R. Horvitz, and B. Conradt (2004)
PNAS 101, 12549-12554
   Abstract »    Full Text »    PDF »
From The Cover: The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation.
M. Welcker, A. Orian, J. Jin, J. E. Grim, J. W. Harper, R. N. Eisenman, and B. E. Clurman (2004)
PNAS 101, 9085-9090
   Abstract »    Full Text »    PDF »
Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7.
M. Yada, S. Hatakeyama, T. Kamura, M. Nishiyama, R. Tsunematsu, H. Imaki, N. Ishida, F. Okumura, K. Nakayama, and K. I. Nakayama (2004)
EMBO J. 23, 2116-2125
   Abstract »    Full Text »    PDF »
Pen-2 Is Sequestered in the Endoplasmic Reticulum and Subjected to Ubiquitylation and Proteasome-mediated Degradation in the Absence of Presenilin.
A. Bergman, E. M. Hansson, S. E. Pursglove, M. R. Farmery, L. Lannfelt, U. Lendahl, J. Lundkvist, and J. Naslund (2004)
J. Biol. Chem. 279, 16744-16753
   Abstract »    Full Text »    PDF »
Evidence That C Promoter-binding Factor 1 Binding Is Required for Notch-1-mediated Repression of Activator Protein-1.
J. Chu and E. H. Bresnick (2004)
J. Biol. Chem. 279, 12337-12345
   Abstract »    Full Text »    PDF »
Mouse Fbw7/Sel-10/Cdc4 Is Required for Notch Degradation during Vascular Development.
R. Tsunematsu, K. Nakayama, Y. Oike, M. Nishiyama, N. Ishida, S. Hatakeyama, Y. Bessho, R. Kageyama, T. Suda, and K. I. Nakayama (2004)
J. Biol. Chem. 279, 9417-9423
   Abstract »    Full Text »    PDF »
The Ubiquitin Ligase SCFFbw7 Antagonizes Apoptotic JNK Signaling.
A. S. Nateri, L. Riera-Sans, C. D. Costa, and A. Behrens (2004)
Science 303, 1374-1378
   Abstract »    Full Text »    PDF »
Regulated Intramembrane Proteolysis of the p75 Neurotrophin Receptor Modulates Its Association with the TrkA Receptor.
K.-M. Jung, S. Tan, N. Landman, K. Petrova, S. Murray, R. Lewis, P. K. Kim, D. S. Kim, S. H. Ryu, M. V. Chao, et al. (2003)
J. Biol. Chem. 278, 42161-42169
   Abstract »    Full Text »    PDF »
Regulation of Notch Signaling by a Novel Mechanism Involving Suppressor of Hairless Stability and Carboxyl Terminus-Truncated Notch.
C. S. Wesley and L.-P. Mok (2003)
Mol. Cell. Biol. 23, 5581-5593
   Abstract »    Full Text »    PDF »
Proteolytic Processing of the p75 Neurotrophin Receptor and Two Homologs Generates C-Terminal Fragments with Signaling Capability.
K. C. Kanning, M. Hudson, P. S. Amieux, J. C. Wiley, M. Bothwell, and L. C. Schecterson (2003)
J. Neurosci. 23, 5425-5436
   Abstract »    Full Text »    PDF »
Mammalian Numb Proteins Promote Notch1 Receptor Ubiquitination and Degradation of the Notch1 Intracellular Domain.
M. A. McGill and C. J. McGlade (2003)
J. Biol. Chem. 278, 23196-23203
   Abstract »    Full Text »    PDF »
hephaestus encodes a polypyrimidine tract binding protein that regulates Notch signalling during wing development in Drosophila melanogaster.
D. A. Dansereau, M. D. Lunke, A. Finkielsztein, M. A. Russell, and W. J. Brook (2003)
Development 129, 5553-5566
   Abstract »    Full Text »    PDF »
Genetic Analysis of Caenorhabditis elegans glp-1 Mutants Suggests Receptor Interaction or Competition.
A. S.-R. Pepper, D. J. Killian, and E. J. A. Hubbard (2003)
Genetics 163, 115-132
   Abstract »    Full Text »    PDF »
Presenilin-dependent Intramembrane Proteolysis of CD44 Leads to the Liberation of Its Intracellular Domain and the Secretion of an Abeta -like Peptide.
S. Lammich, M. Okochi, M. Takeda, C. Kaether, A. Capell, A.-K. Zimmer, D. Edbauer, J. Walter, H. Steiner, and C. Haass (2002)
J. Biol. Chem. 277, 44754-44759
   Abstract »    Full Text »    PDF »
Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex.
C. J. Fryer, E. Lamar, I. Turbachova, C. Kintner, and K. A. Jones (2002)
Genes & Dev. 16, 1397-1411
   Abstract »    Full Text »    PDF »
c-Cbl Associates Directly with the C-terminal Tail of the Receptor for the Macrophage Colony-stimulating Factor, c-Fms, and Down-modulates This Receptor but Not the Viral Oncogene v-Fms.
A. Mancini, A. Koch, R. Wilms, and T. Tamura (2002)
J. Biol. Chem. 277, 14635-14640
   Abstract »    Full Text »    PDF »
Insulin-degrading Enzyme Rapidly Removes the beta -Amyloid Precursor Protein Intracellular Domain (AICD).
D. Edbauer, M. Willem, S. Lammich, H. Steiner, and C. Haass (2002)
J. Biol. Chem. 277, 13389-13393
   Abstract »    Full Text »    PDF »
Notch: a membrane-bound transcription factor.
R. Kopan (2002)
J. Cell Sci. 115, 1095-1097
   Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882