Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 15 December 2009
Vol. 2, Issue 101, p. ra82
[DOI: 10.1126/scisignal.2000446]


Editor's Summary

Inhibiting Lipid Metabolism to Combat Glioblastoma
Glioblastoma, the most common form of brain cancer, is frequently lethal. Glioblastoma is often associated with increased signaling through the epidermal growth factor receptor (EGFR); however, therapeutic efforts focused on inhibiting EGFR signaling have been disappointing. Guo et al. analyzed tumor tissue removed from glioblastoma patients before and during treatment with the EGFR inhibitor lapatinib and found that EGFR signaling activated sterol regulatory element–binding protein 1 (SREBP-1), a key regulator of lipid metabolism, and increased the cellular concentrations of fatty acids. Intriguingly, inhibiting fatty acid synthesis promoted apoptosis in glioblastoma cells with substantial EGFR signaling both in vitro and when transplanted into immunodeficient mice, but not in glioblastoma cells with little EGFR signaling. Thus, inhibition of fatty acid synthesis may represent a new avenue toward treating glioblastomas driven by EGFR signaling.

Citation: D. Guo, R. M. Prins, J. Dang, D. Kuga, A. Iwanami, H. Soto, K. Y. Lin, T. T. Huang, D. Akhavan, M. B. Hock, S. Zhu, A. A. Kofman, S. J. Bensinger, W. H. Yong, H. V. Vinters, S. Horvath, A. D. Watson, J. G. Kuhn, H. I. Robins, M. P. Mehta, P. Y. Wen, L. M. DeAngelis, M. D. Prados, I. K. Mellinghoff, T. F. Cloughesy, P. S. Mischel, EGFR Signaling Through an Akt-SREBP-1–Dependent, Rapamycin-Resistant Pathway Sensitizes Glioblastomas to Antilipogenic Therapy. Sci. Signal. 2, ra82 (2009).

Read the Full Text

Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development.
F. Baenke, B. Peck, H. Miess, and A. Schulze (2013)
Dis. Model. Mech. 6, 1353-1363
   Abstract »    Full Text »    PDF »
De-Repression of PDGFR{beta} Transcription Promotes Acquired Resistance to EGFR Tyrosine Kinase Inhibitors in Glioblastoma Patients.
D. Akhavan, A. L. Pourzia, A. A. Nourian, K. J. Williams, D. Nathanson, I. Babic, G. R. Villa, K. Tanaka, A. Nael, H. Yang, et al. (2013)
Cancer Discovery 3, 534-547
   Abstract »    Full Text »    PDF »
An Essential Requirement for the SCAP/SREBP Signaling Axis to Protect Cancer Cells from Lipotoxicity.
K. J. Williams, J. P. Argus, Y. Zhu, M. Q. Wilks, B. N. Marbois, A. G. York, Y. Kidani, A. L. Pourzia, D. Akhavan, D. N. Lisiero, et al. (2013)
Cancer Res. 73, 2850-2862
   Abstract »    Full Text »    PDF »
PML mediates glioblastoma resistance to mammalian target of rapamycin (mTOR)-targeted therapies.
A. Iwanami, B. Gini, C. Zanca, T. Matsutani, A. Assuncao, A. Nael, J. Dang, H. Yang, S. Zhu, J. Kohyama, et al. (2013)
PNAS 110, 4339-4344
   Abstract »    Full Text »    PDF »
The multifaceted role of mTORC1 in the control of lipid metabolism.
S. J. H. Ricoult and B. D. Manning (2013)
EMBO Rep. 14, 242-251
   Abstract »    Full Text »    PDF »
Key concepts in glioblastoma therapy.
J. Bartek Jr, K. Ng, J. Bartek, W. Fischer, B. Carter, and C. C. Chen (2012)
J. Neurol. Neurosurg. Psychiatry 83, 753-760
   Abstract »    Full Text »    PDF »
SREBP-1 activation by glucose mediates TGF-{beta} upregulation in mesangial cells.
L. Uttarwar, B. Gao, A. J. Ingram, and J. C. Krepinsky (2012)
Am J Physiol Renal Physiol 302, F329-F341
   Abstract »    Full Text »    PDF »
Oncogenic EGFR Signaling Activates an mTORC2-NF-{kappa}B Pathway That Promotes Chemotherapy Resistance.
K. Tanaka, I. Babic, D. Nathanson, D. Akhavan, D. Guo, B. Gini, J. Dang, S. Zhu, H. Yang, J. De Jesus, et al. (2011)
Cancer Discovery 1, 524-538
   Abstract »    Full Text »    PDF »
An LXR Agonist Promotes Glioblastoma Cell Death through Inhibition of an EGFR/AKT/SREBP-1/LDLR-Dependent Pathway.
D. Guo, F. Reinitz, M. Youssef, C. Hong, D. Nathanson, D. Akhavan, D. Kuga, A. N. Amzajerdi, H. Soto, S. Zhu, et al. (2011)
Cancer Discovery 1, 442-456
   Abstract »    Full Text »    PDF »
Metabolic state of glioma stem cells and nontumorigenic cells.
E. Vlashi, C. Lagadec, L. Vergnes, T. Matsutani, K. Masui, M. Poulou, R. Popescu, L. Della Donna, P. Evers, C. Dekmezian, et al. (2011)
PNAS 108, 16062-16067
   Abstract »    Full Text »    PDF »
Positive Feedback Loop Between PI3K-Akt-mTORC1 Signaling and the Lipogenic Pathway Boosts Akt Signaling: Induction of the Lipogenic Pathway by a Melanoma Antigen.
Y. Yamauchi, K. Furukawa, K. Hamamura, and K. Furukawa (2011)
Cancer Res. 71, 4989-4997
   Abstract »    Full Text »    PDF »
A GATA4-regulated tumor suppressor network represses formation of malignant human astrocytomas.
S. Agnihotri, A. Wolf, D. M. Munoz, C. J. Smith, A. Gajadhar, A. Restrepo, I. D. Clarke, G. N. Fuller, S. Kesari, P. B. Dirks, et al. (2011)
J. Exp. Med. 208, 689-702
   Abstract »    Full Text »    PDF »
New Strategies in the Molecular Targeting of Glioblastoma: How Do You Hit a Moving Target?.
T. F. Cloughesy and P. S. Mischel (2011)
Clin. Cancer Res. 17, 6-11
   Abstract »    Full Text »    PDF »
The Effects of Anti-VEGFR and Anti-EGFR Agents on Glioma Cell Migration Through Implication of Growth Factors with Integrins.
Anticancer Res 30, 4987-4992
   Abstract »    Full Text »    PDF »
Balancing biosynthesis and bioenergetics: metabolic programs in oncogenesis.
J. F. Barger and D. R. Plas (2010)
Endocr. Relat. Cancer 17, R287-R304
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 15 December 2009.
P. S. Mischel and A. M. VanHook (2009)
Science Signaling 2, pc23
   Abstract »    Full Text »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882