Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. Signal., 26 May 2009
Vol. 2, Issue 72, p. ra24
[DOI: 10.1126/scisignal.2000282]

RESEARCH ARTICLES

Editor's Summary

SUMO Status Revealed
Posttranslational modification of proteins through their conjugation to small ubiquitin-like modifier (SUMO) proteins is important in the nucleus for the repair of damaged DNA and the maintenance of chromosome structure, as well as for a number of cytoplasmic processes. Although the machinery involved in attaching SUMO moieties to target proteins is well characterized, less is known about the upstream signals that trigger this modification. Golebiowski et al. designed a highly stringent, quantitative approach, involving protein purification and mass spectrometric techniques, to perform a system-wide analysis of the SUMOylation states of hundreds of proteins in HeLa cells in response to heat shock. The authors also analyzed the dynamic nature of SUMOylation in cells during the subsequent recovery phase. In addition to identifying many previously unknown substrates of SUMO-2, this proteome-wide analysis of SUMOylation revealed a rapid and dramatic redistribution of SUMO-2 among proteins involved in short- or long-term responses to heat stress. This new approach should also prove valuable in systems-wide analysis of other posttranslational modifications.

Citation: F. Golebiowski, I. Matic, M. H. Tatham, C. Cole, Y. Yin, A. Nakamura, J. Cox, G. J. Barton, M. Mann, R. T. Hay, System-Wide Changes to SUMO Modifications in Response to Heat Shock. Sci. Signal. 2, ra24 (2009).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
SUMOylation of the polycomb group protein L3MBTL2 facilitates repression of its target genes.
C. Stielow, B. Stielow, F. Finkernagel, M. Scharfe, M. Jarek, and G. Suske (2014)
Nucleic Acids Res. 42, 3044-3058
   Abstract »    Full Text »    PDF »
The SUMO proteases SENP1 and SENP2 play a critical role in nucleoporin homeostasis and nuclear pore complex function.
K.-H. Chow, S. Elgort, M. Dasso, M. A. Powers, and K. S. Ullman (2014)
Mol. Biol. Cell 25, 160-168
   Abstract »    Full Text »    PDF »
The deSUMOylase SENP7 promotes chromatin relaxation for homologous recombination DNA repair.
A. J. Garvin, R. M. Densham, S. A. Blair-Reid, K. M. Pratt, H. R. Stone, D. Weekes, K. J. Lawrence, and J. R. Morris (2013)
EMBO Rep. 14, 975-983
   Abstract »    Full Text »    PDF »
A SUMO-dependent interaction between Senataxin and the exosome, disrupted in the neurodegenerative disease AOA2, targets the exosome to sites of transcription-induced DNA damage.
P. Richard, S. Feng, and J. L. Manley (2013)
Genes & Dev. 27, 2227-2232
   Abstract »    Full Text »    PDF »
Targeting RNA Binding Proteins Involved in Neurodegeneration.
M. Romano and E. Buratti (2013)
J Biomol Screen 18, 967-983
   Abstract »    Full Text »    PDF »
Identification of Biochemically Distinct Properties of the Small Ubiquitin-related Modifier (SUMO) Conjugation Pathway in Plasmodium falciparum.
K. Reiter, D. Mukhopadhyay, H. Zhang, L. E. Boucher, N. Kumar, J. Bosch, and M. J. Matunis (2013)
J. Biol. Chem. 288, 27724-27736
   Abstract »    Full Text »    PDF »
Targeted Identification of SUMOylation Sites in Human Proteins Using Affinity Enrichment and Paralog-specific Reporter Ions.
F. Lamoliatte, E. Bonneil, C. Durette, O. Caron-Lizotte, D. Wildemann, J. Zerweck, H. Wenshuk, and P. Thibault (2013)
Mol. Cell. Proteomics 12, 2536-2550
   Abstract »    Full Text »    PDF »
RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response.
S. L. Poulsen, R. K. Hansen, S. A. Wagner, L. van Cuijk, G. J. van Belle, W. Streicher, M. Wikstrom, C. Choudhary, A. B. Houtsmuller, J. A. Marteijn, et al. (2013)
J. Cell Biol. 201, 797-807
   Abstract »    Full Text »    PDF »
Arkadia, a Novel SUMO-Targeted Ubiquitin Ligase Involved in PML Degradation.
Y. Erker, H. Neyret-Kahn, J. S. Seeler, A. Dejean, A. Atfi, and L. Levy (2013)
Mol. Cell. Biol. 33, 2163-2177
   Abstract »    Full Text »    PDF »
Identification of CRM1-dependent Nuclear Export Cargos Using Quantitative Mass Spectrometry.
K. Thakar, S. Karaca, S. A. Port, H. Urlaub, and R. H. Kehlenbach (2013)
Mol. Cell. Proteomics 12, 664-678
   Abstract »    Full Text »    PDF »
Quantitative Proteomics Reveals Factors Regulating RNA Biology as Dynamic Targets of Stress-induced SUMOylation in Arabidopsis.
M. J. Miller, M. Scalf, T. C. Rytz, S. L. Hubler, L. M. Smith, and R. D. Vierstra (2013)
Mol. Cell. Proteomics 12, 449-463
   Abstract »    Full Text »    PDF »
RNA metabolism and ubiquitin/ubiquitin-like modifications collide.
F. Pelisch, G. Risso, and A. Srebrow (2013)
Briefings in Functional Genomics 12, 66-71
   Abstract »    Full Text »    PDF »
Dynamic SUMOylation Is Linked to the Activity Cycles of Androgen Receptor in the Cell Nucleus.
M. Rytinki, S. Kaikkonen, P. Sutinen, V. Paakinaho, V. Rahkama, and J. J. Palvimo (2012)
Mol. Cell. Biol. 32, 4195-4205
   Abstract »    Full Text »    PDF »
Rap80 Protein Recruitment to DNA Double-strand Breaks Requires Binding to Both Small Ubiquitin-like Modifier (SUMO) and Ubiquitin Conjugates.
X. Hu, A. Paul, and B. Wang (2012)
J. Biol. Chem. 287, 25510-25519
   Abstract »    Full Text »    PDF »
SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells to DNA damage.
Y. Yin, A. Seifert, J. S. Chua, J.-F. Maure, F. Golebiowski, and R. T. Hay (2012)
Genes & Dev. 26, 1196-1208
   Abstract »    Full Text »    PDF »
Small Ubiquitin-like Modifier (SUMO) Modification of Zinc Finger Protein 131 Potentiates Its Negative Effect on Estrogen Signaling.
Y. Oh and K. C. Chung (2012)
J. Biol. Chem. 287, 17517-17529
   Abstract »    Full Text »    PDF »
Small Ubiquitin-like Modifier (SUMO) Modification of E1 Cys Domain Inhibits E1 Cys Domain Enzymatic Activity.
K. Truong, T. D. Lee, and Y. Chen (2012)
J. Biol. Chem. 287, 15154-15163
   Abstract »    Full Text »    PDF »
The Role of Small Ubiquitin-like Modifier-interacting Motif in the Assembly and Regulation of Metal-responsive Transcription Factor 1.
Y.-C. Liu, M.-C. Lin, H.-C. Chen, M. F. Tam, and L.-Y. Lin (2011)
J. Biol. Chem. 286, 42818-42829
   Abstract »    Full Text »    PDF »
Regulation of Vaccinia Virus E3 Protein by Small Ubiquitin-Like Modifier Proteins.
J. Gonzalez-Santamaria, M. Campagna, M. A. Garcia, L. Marcos-Villar, D. Gonzalez, P. Gallego, F. Lopitz-Otsoa, S. Guerra, M. S. Rodriguez, M. Esteban, et al. (2011)
J. Virol. 85, 12890-12900
   Abstract »    Full Text »    PDF »
The SUMO-specific isopeptidase SENP2 associates dynamically with nuclear pore complexes through interactions with karyopherins and the Nup107-160 nucleoporin subcomplex.
J. Goeres, P.-K. Chan, D. Mukhopadhyay, H. Zhang, B. Raught, and M. J. Matunis (2011)
Mol. Biol. Cell 22, 4868-4882
   Abstract »    Full Text »    PDF »
SUMOylation-regulated Protein Phosphorylation, Evidence from Quantitative Phosphoproteomics Analyses.
Q. Yao, H. Li, B.-Q. Liu, X.-Y. Huang, and L. Guo (2011)
J. Biol. Chem. 286, 27342-27349
   Abstract »    Full Text »    PDF »
Comparative Proteomic Analysis Identifies a Role for SUMO in Protein Quality Control.
M. H. Tatham, I. Matic, M. Mann, and R. T. Hay (2011)
Science Signaling 4, rs4
   Abstract »    Full Text »    PDF »
Characterizing the N- and C-terminal Small Ubiquitin-like Modifier (SUMO)-interacting Motifs of the Scaffold Protein DAXX.
E. Escobar-Cabrera, M. Okon, D. K. W. Lau, C. F. Dart, A. M. J. J. Bonvin, and L. P. McIntosh (2011)
J. Biol. Chem. 286, 19816-19829
   Abstract »    Full Text »    PDF »
The Dynamics and Mechanism of SUMO Chain Deconjugation by SUMO-specific Proteases.
M. Bekes, J. Prudden, T. Srikumar, B. Raught, M. N. Boddy, and G. S. Salvesen (2011)
J. Biol. Chem. 286, 10238-10247
   Abstract »    Full Text »    PDF »
Small Ubiquitin-related Modifier (SUMO)-1 Promotes Glycolysis in Hypoxia.
T. A. Agbor, A. Cheong, K. M. Comerford, C. C. Scholz, U. Bruning, A. Clarke, E. P. Cummins, G. Cagney, and C. T. Taylor (2011)
J. Biol. Chem. 286, 4718-4726
   Abstract »    Full Text »    PDF »
Inducible SUMO modification of TANK alleviates its repression of TLR7 signalling.
F. Renner, V. V. Saul, A. Pagenstecher, T. Wittwer, and M. L. Schmitz (2011)
EMBO Rep. 12, 129-135
   Abstract »    Full Text »    PDF »
Purification and identification of endogenous polySUMO conjugates.
R. Bruderer, M. H. Tatham, A. Plechanovova, I. Matic, A. K. Garg, and R. T. Hay (2011)
EMBO Rep. 12, 142-148
   Abstract »    Full Text »    PDF »
A Novel Proteomics Approach to Identify SUMOylated Proteins and Their Modification Sites in Human Cells.
F. Galisson, L. Mahrouche, M. Courcelles, E. Bonneil, S. Meloche, M. K. Chelbi-Alix, and P. Thibault (2011)
Mol. Cell. Proteomics 10, M110.004796
   Abstract »    Full Text »    PDF »
Pregnane X Receptor Is SUMOylated to Repress the Inflammatory Response.
G. Hu, C. Xu, and J. L. Staudinger (2010)
J. Pharmacol. Exp. Ther. 335, 342-350
   Abstract »    Full Text »    PDF »
Proteome-wide screens for small ubiquitin-like modifier (SUMO) substrates identify Arabidopsis proteins implicated in diverse biological processes.
N. Elrouby and G. Coupland (2010)
PNAS 107, 17415-17420
   Abstract »    Full Text »    PDF »
Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis.
M. J. Miller, G. A. Barrett-Wilt, Z. Hua, and R. D. Vierstra (2010)
PNAS 107, 16512-16517
   Abstract »    Full Text »    PDF »
The serine/arginine-rich protein SF2/ASF regulates protein sumoylation.
F. Pelisch, J. Gerez, J. Druker, I. E. Schor, M. J. Munoz, G. Risso, E. Petrillo, B. J. Westman, A. I. Lamond, E. Arzt, et al. (2010)
PNAS 107, 16119-16124
   Abstract »    Full Text »    PDF »
Connecting the Dots: Interplay between Ubiquitylation and SUMOylation at DNA Double-Strand Breaks.
J.-b. Tang and R. A. Greenberg (2010)
Genes & Cancer 1, 787-796
   Abstract »    Full Text »    PDF »
In Vivo Identification of Sumoylation Sites by a Signature Tag and Cysteine-targeted Affinity Purification.
H. A. Blomster, S. Y. Imanishi, {i. } {image}{image}, J. Siimes, J. Kastu, N. A. Morrice, J. E. Eriksson, and L. Sistonen (2010)
J. Biol. Chem. 285, 19324-19329
   Abstract »    Full Text »    PDF »
SUMO proteins are involved in the stress response during spermatogenesis and are localized to DNA double-strand breaks in germ cells.
V. Shrivastava, M. Pekar, E. Grosser, J. Im, and M. Vigodner (2010)
Reproduction 139, 999-1010
   Abstract »    Full Text »    PDF »
Differential Effects of Sumoylation on Transcription and Alternative Splicing by Transcription Elongation Regulator 1 (TCERG1).
M. Sanchez-Alvarez, M. Montes, N. Sanchez-Hernandez, C. Hernandez-Munain, and C. Sune (2010)
J. Biol. Chem. 285, 15220-15233
   Abstract »    Full Text »    PDF »
Silencing of the JNK pathway maintains progesterone receptor activity in decidualizing human endometrial stromal cells exposed to oxidative stress signals.
B. Leitao, M. C. Jones, L. Fusi, J. Higham, Y. Lee, M. Takano, T. Goto, M. Christian, E. W. F. Lam, and J. J. Brosens (2010)
FASEB J 24, 1541-1551
   Abstract »    Full Text »    PDF »
Multiplex SILAC Analysis of a Cellular TDP-43 Proteinopathy Model Reveals Protein Inclusions Associated with SUMOylation and Diverse Polyubiquitin Chains.
N. T. Seyfried, Y. M. Gozal, E. B. Dammer, Q. Xia, D. M. Duong, D. Cheng, J. J. Lah, A. I. Levey, and J. Peng (2010)
Mol. Cell. Proteomics 9, 705-718
   Abstract »    Full Text »    PDF »
The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins.
S. J. L. van Wijk and H. T. M. Timmers (2010)
FASEB J 24, 981-993
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 5 January 2010.
M. B. Yaffe and A. M. VanHook (2010)
Science Signaling 3, pc1
   Abstract »    Full Text »
PARP-1 transcriptional activity is regulated by sumoylation upon heat shock.
N. Martin, K. Schwamborn, V. Schreiber, A. Werner, C. Guillier, X.-D. Zhang, O. Bischof, J.-S. Seeler, and A. Dejean (2009)
EMBO J. 28, 3534-3548
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 28 July 2009.
M. B. Yaffe and A. M. VanHook (2009)
Science Signaling 2, pc14
   Abstract »    Full Text »
Proteomic Revelation: SUMO Changes Partners When the Heat Is On.
K. Flick and P. Kaiser (2009)
Science Signaling 2, pe45
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882