Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 21 July 2009
Vol. 2, Issue 80, p. ra36
[DOI: 10.1126/scisignal.2000308]


Editor's Summary

Dyskinesia Relief
In its role as a regulator of cell growth, the mammalian complex of rapamycin (mTOR) phosphorylates several proteins involved in protein synthesis, such as 4E-BP (eukaryotic initiation factor 4E binding protein) and S6K (p70 S6 kinase), in response to growth factors and nutrient availability. Santini et al. show that L-DOPA, the most commonly used medication to alleviate the immobility and rigidity (akinesia) characteristic of Parkinson’s disease (PD), also stimulates the rapamycin-sensitive mTOR complex 1 (mTORC1). In a mouse model of PD, L-DOPA treatment increased phosphorylation of several direct and indirect mTOR targets, including S6K, its substrate ribosomal protein S6 (S6), 4E-BP, and eukaryotic initiation factor 4E (eIF4E). These phosphorylation increases required the activity of dopamine D1 receptors and extracellular signal–regulated kinase (ERK). Furthermore, increased phosphorylation of S6K, S6, 4E-BP, and eIF4E correlated with stronger abnormal involuntary movements (AIMs), a measure of dyskinesia (a side effect of L-DOPA that limits its clinical use). Administration of rapamycin, which predominantly inhibits mTORC1, decreased the severity of AIMs without affecting the ability of L-DOPA to reduce akinesia. Thus, the mTORC1 signaling pathway could be targeted in PD patients suffering from the dyskinesia associated with L-DOPA treatment.

Citation: E. Santini, M. Heiman, P. Greengard, E. Valjent, G. Fisone, Inhibition of mTOR Signaling in Parkinson’s Disease Prevents L-DOPA–Induced Dyskinesia. Sci. Signal. 2, ra36 (2009).

Read the Full Text

Molecular adaptations of striatal spiny projection neurons during levodopa-induced dyskinesia.
M. Heiman, A. Heilbut, V. Francardo, R. Kulicke, R. J. Fenster, E. D. Kolaczyk, J. P. Mesirov, D. J. Surmeier, M. A. Cenci, and P. Greengard (2014)
PNAS 111, 4578-4583
   Abstract »    Full Text »    PDF »
Rhes, a Striatal-selective Protein Implicated in Huntington Disease, Binds Beclin-1 and Activates Autophagy.
R. G. Mealer, A. J. Murray, N. Shahani, S. Subramaniam, and S. H. Snyder (2014)
J. Biol. Chem. 289, 3547-3554
   Abstract »    Full Text »    PDF »
The Pharmacology of L-DOPA-Induced Dyskinesia in Parkinson's Disease.
P. Huot, T. H. Johnston, J. B. Koprich, S. H. Fox, and J. M. Brotchie (2013)
Pharmacol. Rev. 65, 171-222
   Abstract »    Full Text »    PDF »
5-HT6 receptor recruitment of mTOR as a mechanism for perturbed cognition in schizophrenia.
J. Meffre, S. Chaumont-Dubel, C. Mannoury la Cour, F. Loiseau, D. J. G. Watson, A. Dekeyne, M. Seveno, J.-M. Rivet, F. Gaven, P. Deleris, et al. (2012)
EMBO Mol Med. 4, 1043-1056
   Abstract »    Full Text »    PDF »
Consolidation and translation regulation.
S. Gal-Ben-Ari, J. W. Kenney, H. Ounalla-Saad, E. Taha, O. David, D. Levitan, I. Gildish, D. Panja, B. Pai, K. Wibrand, et al. (2012)
Learn. Mem. 19, 410-422
   Abstract »    Full Text »    PDF »
Dopamine- and cAMP-regulated Phosphoprotein of 32-kDa (DARPP-32)-dependent Activation of Extracellular Signal-regulated Kinase (ERK) and Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling in Experimental Parkinsonism.
E. Santini, M. Feyder, G. Gangarossa, H. S. Bateup, P. Greengard, and G. Fisone (2012)
J. Biol. Chem. 287, 27806-27812
   Abstract »    Full Text »    PDF »
G{alpha}olf Mutation Allows Parsing the Role of cAMP-Dependent and Extracellular Signal-Regulated Kinase-Dependent Signaling in L-3,4-Dihydroxyphenylalanine-Induced Dyskinesia.
C. Alcacer, E. Santini, E. Valjent, F. Gaven, J.-A. Girault, and D. Herve (2012)
J. Neurosci. 32, 5900-5910
   Abstract »    Full Text »    PDF »
Tonic Dopamine Induces Persistent Changes in the Transient Potassium Current through Translational Regulation.
E. W. Rodgers, W.-D. C. Krenz, and D. J. Baro (2011)
J. Neurosci. 31, 13046-13056
   Abstract »    Full Text »    PDF »
The Physiology, Signaling, and Pharmacology of Dopamine Receptors.
J.-M. Beaulieu and R. R. Gainetdinov (2011)
Pharmacol. Rev. 63, 182-217
   Abstract »    Full Text »    PDF »
Role of Aberrant Striatal Dopamine D1 Receptor/cAMP/Protein Kinase A/DARPP32 Signaling in the Paradoxical Calming Effect of Amphetamine.
F. Napolitano, A. Bonito-Oliva, M. Federici, M. Carta, F. Errico, S. Magara, G. Martella, R. Nistico, D. Centonze, A. Pisani, et al. (2010)
J. Neurosci. 30, 11043-11056
   Abstract »    Full Text »    PDF »
Roles of Fragile X Mental Retardation Protein in Dopaminergic Stimulation-induced Synapse-associated Protein Synthesis and Subsequent {alpha}-Amino-3-hydroxyl-5-methyl-4-isoxazole-4-propionate (AMPA) Receptor Internalization.
H. Wang, S. S. Kim, and M. Zhuo (2010)
J. Biol. Chem. 285, 21888-21901
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 21 July 2009.
W. Wong and A. M. VanHook (2009)
Science Signaling 2, pc13
   Abstract »    Full Text »
Thwarting Dyskinesia by Targeting mTORC1.
E. Klann (2009)
Science Signaling 2, pe42
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882