Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 4 August 2009
Vol. 2, Issue 82, p. ra41
[DOI: 10.1126/scisignal.2000343]


Editor's Summary

Defining the Critical Relationship
Many protein kinases have multiple potential substrates and, in turn, many substrate sites can be phosphorylated by multiple kinases. Thus, determining which of many possible kinase-substrate pairs mediate a particular response can be challenging. Here, Schleicher et al. used lines of mice that both lacked the protein kinase Akt1 and carried mutations in the Akt1 substrate endothelial nitric oxide synthase (eNOS) that either mimicked or abolished Akt1 phosphorylation to tease out the physiological functions of Akt1-eNOS signaling. Although various phenotypes associated with loss of Akt1 were unaffected by the eNOS mutations—indicating that these Akt1 functions were mediated through other substrates—defects in postnatal reparative angiogenesis associated with the loss of Akt1 were rescued by the phosphomimetic mutant. Further analysis indicated that Akt1 signaled through eNOS to regulate the hypoxia-inducible factor 1{alpha} (HIF-1{alpha})–mediated angiogenic response to ischemia. Thus, the authors conclude that Akt1 regulates postnatal angiogenesis largely through eNOS phosphorylation.

Citation: M. Schleicher, J. Yu, T. Murata, B. Derakhshan, D. Atochin, L. Qian, S. Kashiwagi, A. Di Lorenzo, K. D. Harrison, P. L. Huang, W. C. Sessa, The Akt1-eNOS Axis Illustrates the Specificity of Kinase-Substrate Relationships in Vivo. Sci. Signal. 2, ra41 (2009).

Read the Full Text

R. Ju, Z. W. Zhuang, J. Zhang, A. A. Lanahan, T. Kyriakides, W. C. Sessa, and M. Simons (2014)
J. Biol. Chem. 289, 510-519
   Abstract »    Full Text »    PDF »
eNOS-derived nitric oxide regulates endothelial barrier function through VE-cadherin and Rho GTPases.
A. Di Lorenzo, M. I. Lin, T. Murata, S. Landskroner-Eiger, M. Schleicher, M. Kothiya, Y. Iwakiri, J. Yu, P. L. Huang, and W. C. Sessa (2013)
J. Cell Sci. 126, 5541-5552
   Abstract »    Full Text »    PDF »
C-Reactive Protein Causes Insulin Resistance in Mice Through Fc{gamma} Receptor IIB-Mediated Inhibition of Skeletal Muscle Glucose Delivery.
K. Tanigaki, W. Vongpatanasin, J. A. Barrera, D. N. Atochin, P. L. Huang, E. Bonvini, P. W. Shaul, and C. Mineo (2013)
Diabetes 62, 721-731
   Abstract »    Full Text »    PDF »
Cavin-3 dictates the balance between ERK and Akt signaling.
V. J. Hernandez, J. Weng, P. Ly, S. Pompey, H. Dong, L. Mishra, M. Schwarz, R. G. Anderson, and P. Michaely (2013)
eLife Sci 2, e00905
   Abstract »    Full Text »    PDF »
Novel Role of the IGF-1 Receptor in Endothelial Function and Repair: Studies in Endothelium-Targeted IGF-1 Receptor Transgenic Mice.
H. Imrie, H. Viswambharan, P. Sukumar, A. Abbas, R. M. Cubbon, N. Yuldasheva, M. Gage, J. Smith, S. Galloway, A. Skromna, et al. (2012)
Diabetes 61, 2359-2368
   Abstract »    Full Text »    PDF »
Nitric oxide synthases: regulation and function.
U. Forstermann and W. C. Sessa (2012)
Eur. Heart J. 33, 829-837
   Abstract »    Full Text »    PDF »
Changing standard chow diet promotes vascular NOS dysfunction in Dahl S rats.
F. T. Spradley, D. H. Ho, K.-T. Kang, D. M. Pollock, and J. S. Pollock (2012)
Am J Physiol Regulatory Integrative Comp Physiol 302, R150-R158
   Abstract »    Full Text »    PDF »
Endothelial nitric oxide synthase controls the expression of the angiogenesis inhibitor thrombospondin 2.
S. MacLauchlan, J. Yu, M. Parrish, T. A. Asoulin, M. Schleicher, M. M. Krady, J. Zeng, P. L. Huang, W. C. Sessa, and T. R. Kyriakides (2011)
PNAS 108, E1137-E1145
   Abstract »    Full Text »    PDF »
Priming of hypoxia-inducible factor by neuronal nitric oxide synthase is essential for adaptive responses to severe anemia.
A. K. Y. Tsui, P. A. Marsden, C. D. Mazer, S. L. Adamson, R. M. Henkelman, J. J. D. Ho, D. F. Wilson, S. P. Heximer, K. A. Connelly, S.-S. Bolz, et al. (2011)
PNAS 108, 17544-17549
   Abstract »    Full Text »    PDF »
Bone Morphogenetic Protein Receptor II Is a Novel Mediator of Endothelial Nitric-oxide Synthase Activation.
A. Gangopahyay, M. Oran, E. M. Bauer, J. W. Wertz, S. A. Comhair, S. C. Erzurum, and P. M. Bauer (2011)
J. Biol. Chem. 286, 33134-33140
   Abstract »    Full Text »    PDF »
The Insulin-Like Growth Factor-1 Receptor Is a Negative Regulator of Nitric Oxide Bioavailability and Insulin Sensitivity in the Endothelium.
A. Abbas, H. Imrie, H. Viswambharan, P. Sukumar, A. Rajwani, R. M. Cubbon, M. Gage, J. Smith, S. Galloway, N. Yuldeshava, et al. (2011)
Diabetes 60, 2169-2178
   Abstract »    Full Text »    PDF »
Dimethylarginine Dimethylaminohydrolase 1 Modulates Endothelial Cell Growth Through Nitric Oxide and Akt.
P. Zhang, X. Hu, X. Xu, Y. Chen, and R. J. Bache (2011)
Arterioscler Thromb Vasc Biol 31, 890-897
   Abstract »    Full Text »    PDF »
HDAC5: going with the flow.
P. Huang (2010)
Blood 115, 2728-2729
   Full Text »    PDF »
Time Is of the Essence: Vascular Implications of the Circadian Clock.
R. D. Rudic (2009)
Circulation 120, 1714-1721
   Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882