Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 20 October 2009
Vol. 2, Issue 93, p. ra67
[DOI: 10.1126/scisignal.2000522]


Editor's Summary

Resisting Ischemia
Loss of blood flow to the brain—as can occur during a stroke—leads to the death of neurons, a process that involves a pathological increase in intracellular calcium. Berna-Erro et al. investigated the role of capacitive calcium entry (CCE), a process in which depletion of calcium from intracellular stores triggers its entry across the plasma membrane, in ischemia-induced calcium entry and neuronal death. The calcium-sensing molecule STIM1 is known to play a crucial role in mediating CCE in various cell types; in neurons, however, Berna-Erro et al. found that CCE depended instead on the closely related molecule STIM2. Neurons from mice lacking STIM2 were resistant to the effects of hypoxia in vitro; moreover, mice lacking STIM2 showed less neurological damage than did wild-type mice in a model of ischemic stroke. Thus, the authors conclude that STIM2 is critical to neuronal CCE and that CCE plays a role in neuronal death in ischemia.

Citation: A. Berna-Erro, A. Braun, R. Kraft, C. Kleinschnitz, M. K. Schuhmann, D. Stegner, T. Wultsch, J. Eilers, S. G. Meuth, G. Stoll, B. Nieswandt, STIM2 Regulates Capacitive Ca2+ Entry in Neurons and Plays a Key Role in Hypoxic Neuronal Cell Death. Sci. Signal. 2, ra67 (2009).

Read the Full Text

FTY720 Ameliorates Acute Ischemic Stroke in Mice by Reducing Thrombo-Inflammation but Not by Direct Neuroprotection.
P. Kraft, E. Gob, M. K. Schuhmann, K. Gobel, C. Deppermann, I. Thielmann, A. M. Herrmann, K. Lorenz, M. Brede, G. Stoll, et al. (2013)
Stroke 44, 3202-3210
   Abstract »    Full Text »    PDF »
ROS and SOCE: recent advances and controversies in the regulation of STIM and Orai.
I. Bogeski, T. Kilch, and B. A. Niemeyer (2012)
J. Physiol. 590, 4193-4200
   Abstract »    Full Text »    PDF »
Polyamines regulate intestinal epithelial restitution through TRPC1-mediated Ca2+ signaling by differentially modulating STIM1 and STIM2.
J. N. Rao, N. Rathor, R. Zhuang, T. Zou, L. Liu, L. Xiao, D. J. Turner, and J.-Y. Wang (2012)
Am J Physiol Cell Physiol 303, C308-C317
   Abstract »    Full Text »    PDF »
Cholesterol loss during glutamate-mediated excitotoxicity.
A. O. Sodero, J. Vriens, D. Ghosh, D. Stegner, A. Brachet, M. Pallotto, M. Sassoe-Pognetto, J. F. Brouwers, J. B. Helms, B. Nieswandt, et al. (2012)
EMBO J. 31, 1764-1773
   Abstract »    Full Text »    PDF »
Endoplasmic Reticulum Ca2+ Handling in Excitable Cells in Health and Disease.
G. E. Stutzmann and M. P. Mattson (2011)
Pharmacol. Rev. 63, 700-727
   Abstract »    Full Text »    PDF »
STIM1L is a new actin-binding splice variant involved in fast repetitive Ca2+ release.
B. Darbellay, S. Arnaudeau, C. R. Bader, S. Konig, and L. Bernheim (2011)
J. Cell Biol. 194, 335-346
   Abstract »    Full Text »    PDF »
Evidence that {gamma}-Secretase-Mediated Notch Signaling Induces Neuronal Cell Death via the Nuclear Factor-{kappa}B-Bcl-2-Interacting Mediator of Cell Death Pathway in Ischemic Stroke.
T. V. Arumugam, Y.-L. Cheng, Y. Choi, Y.-H. Choi, S. Yang, Y.-K. Yun, J.-S. Park, D. K. Yang, J. Thundyil, M. Gelderblom, et al. (2011)
Mol. Pharmacol. 80, 23-31
   Abstract »    Full Text »    PDF »
A Cytosolic STIM2 Preprotein Created by Signal Peptide Inefficiency Activates ORAI1 in a Store-independent Manner.
S. J. L. Graham, M. A. Dziadek, and L. S. Johnstone (2011)
J. Biol. Chem. 286, 16174-16185
   Abstract »    Full Text »    PDF »
Store-operated Ca2+ signaling in dendritic cells occurs independently of STIM1.
B. C. Bandyopadhyay, S. C. Pingle, and G. P. Ahern (2011)
J. Leukoc. Biol. 89, 57-62
   Abstract »    Full Text »    PDF »
The Calcium Store Sensor, STIM1, Reciprocally Controls Orai and CaV1.2 Channels.
Y. Wang, X. Deng, S. Mancarella, E. Hendron, S. Eguchi, J. Soboloff, X. D. Tang, and D. L. Gill (2010)
Science 330, 105-109
   Abstract »    Full Text »    PDF »
Roles of Platelet STIM1 and Orai1 in Glycoprotein VI- and Thrombin-dependent Procoagulant Activity and Thrombus Formation.
K. Gilio, R. van Kruchten, A. Braun, A. Berna-Erro, M. A. H. Feijge, D. Stegner, P. E. J. van der Meijden, M. J. E. Kuijpers, D. Varga-Szabo, J. W. M. Heemskerk, et al. (2010)
J. Biol. Chem. 285, 23629-23638
   Abstract »    Full Text »    PDF »
Human Muscle Economy Myoblast Differentiation and Excitation-Contraction Coupling Use the Same Molecular Partners, STIM1 and STIM2.
B. Darbellay, S. Arnaudeau, D. Ceroni, C. R. Bader, S. Konig, and L. Bernheim (2010)
J. Biol. Chem. 285, 22437-22447
   Abstract »    Full Text »    PDF »
Stromal Interaction Molecules 1 and 2 Are Key Regulators of Autoreactive T Cell Activation in Murine Autoimmune Central Nervous System Inflammation.
M. K. Schuhmann, D. Stegner, A. Berna-Erro, S. Bittner, A. Braun, C. Kleinschnitz, G. Stoll, H. Wiendl, S. G. Meuth, and B. Nieswandt (2010)
J. Immunol. 184, 1536-1542
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882