Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 1 December 2009
Vol. 2, Issue 99, p. ra78
[DOI: 10.1126/scisignal.2000511]


Editor's Summary

BAT Signal
The high numbers of mitochondria in brown adipose tissue (BAT) oxidize fat to produce heat (a process referred to as thermogenesis). Thus, increasing the amount or activity of BAT has been proposed as a potential method of countering metabolic diseases such as obesity and type II diabetes; however, the signaling pathways that regulate the differentiation of BAT have not been completely elucidated. Haas et al. have uncovered a key role for protein kinase G I (PKGI) in the differentiation and thermogenic function of BAT. Brown fat cells from mice lacking PKGI had lower mitochondrial content and reduced amounts of adipogenic factors compared to those from wild-type mice. Strikingly, PKGI-deficient mice exhibited lower body temperatures than those of wild-type mice. Thus, treatments that increase the activity of the PKGI pathway in BAT could enhance BAT function and its calorie-burning effects.

Citation: B. Haas, P. Mayer, K. Jennissen, D. Scholz, M. B. Diaz, W. Bloch, S. Herzig, R. Fässler, A. Pfeifer, Protein Kinase G Controls Brown Fat Cell Differentiation and Mitochondrial Biogenesis. Sci. Signal. 2, ra78 (2009).

Read the Full Text

ROCK1 isoform-specific deletion reveals a role for diet-induced insulin resistance.
S.-H. Lee, H. Huang, K. Choi, D. H. Lee, J. Shi, T. Liu, K. H. Chun, J. A. Seo, I. S. Lima, J. M. Zabolotny, et al. (2014)
Am J Physiol Endocrinol Metab 306, E332-E343
   Abstract »    Full Text »    PDF »
Increasing cGMP-dependent protein kinase I activity attenuates cisplatin-induced kidney injury through protection of mitochondria function.
H. Maimaitiyiming, Y. Li, W. Cui, X. Tong, H. Norman, X. Qi, and S. Wang (2013)
Am J Physiol Renal Physiol 305, F881-F890
   Abstract »    Full Text »    PDF »
Increased cGMP promotes healthy expansion and browning of white adipose tissue.
M. M. Mitschke, L. S. Hoffmann, T. Gnad, D. Scholz, K. Kruithoff, P. Mayer, B. Haas, A. Sassmann, A. Pfeifer, and A. Kilic (2013)
FASEB J 27, 1621-1630
   Abstract »    Full Text »    PDF »
A VASP-Rac-Soluble Guanylyl Cyclase Pathway Controls cGMP Production in Adipocytes.
K. Jennissen, F. Siegel, M. Liebig-Gonglach, M.-R. Hermann, S. Kipschull, S. van Dooren, W. S. Kunz, R. Fassler, and A. Pfeifer (2012)
Science Signaling 5, ra62
   Abstract »    Full Text »    PDF »
Cyclic GMP Kinase I Modulates Glucagon Release From Pancreatic {alpha}-Cells.
V. Leiss, A. Friebe, A. Welling, F. Hofmann, and R. Lukowski (2011)
Diabetes 60, 148-156
   Abstract »    Full Text »    PDF »
cGMP-Dependent Protein Kinases and cGMP Phosphodiesterases in Nitric Oxide and cGMP Action.
S. H. Francis, J. L. Busch, and J. D. Corbin (2010)
Pharmacol. Rev. 62, 525-563
   Abstract »    Full Text »    PDF »
Cyclic Nucleotides Converge on Brown Adipose Tissue Differentiation.
P. S. Amieux and G. S. McKnight (2010)
Science Signaling 3, pe2
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 1 December 2009.
A. Pfeifer and A. M. VanHook (2009)
Science Signaling 2, pc22
   Abstract »    Full Text »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882