Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. Signal., 9 February 2010
Vol. 3, Issue 108, p. ra10
[DOI: 10.1126/scisignal.2000628]

RESEARCH ARTICLES

Editor's Summary

Alternative Pathway
Insulin-like growth factor 1 receptor (IGF-1R) is a receptor tyrosine kinase (RTK) that mediates the effects of the protein hormone IGF-1. Binding of IGF-1 to IGF-1R leads to the transphosphorylation of tyrosine residues in the β subunits of the receptor and the activation of its tyrosine kinase activity. Activated IGF-1R stimulates the phosphatidylinositol 3-kinase (PI3K)–Akt and mitogen-activated protein kinase (MAPK) signaling pathways, which promote cell growth and proliferation. Noting that the activities of IGF-1R and other RTKs are modulated by posttranslational modifications, such as ubiquitination, Sehat et al. investigated a role for small ubiquitin-like modifier (SUMO) protein in the regulation of IGF-1R signaling. IGF-1 stimulated the SUMOylation of IGF-1R at three lysine residues in the β subunit of the receptor, which led to its nuclear translocation. Mutation of these residues blocked SUMOylation of the receptor and prevented its accumulation in the nucleus but did not interfere with endocytosis of the receptor or its activation of the PI3K or MAPK pathways. Nuclear IGF-1R bound to putative enhancer sites in genomic DNA and drove transcription of target genes in reporter assays. Together, these findings present an alternative mechanism of signaling by the IGF-1R that may have implications for gene expression.

Citation: B. Sehat, A. Tofigh, Y. Lin, E. Trocmé, U. Liljedahl, J. Lagergren, O. Larsson, SUMOylation Mediates the Nuclear Translocation and Signaling of the IGF-1 Receptor. Sci. Signal. 3, ra10 (2010).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Large-Scale Quality Analysis of Published ChIP-seq Data.
G. K. Marinov, A. Kundaje, P. J. Park, and B. J. Wold (2014)
g3 4, 209-223
   Abstract »    Full Text »    PDF »
Dynamic and Nuclear Expression of PDGFR{alpha} and IGF-1R in Alveolar Rhabdomyosarcoma.
M. I. Aslam, S. Hettmer, J. Abraham, D. LaTocha, A. Soundararajan, E. T. Huang, M. W. Goros, J. E. Michalek, S. Wang, A. Mansoor, et al. (2013)
Mol. Cancer Res. 11, 1303-1313
   Abstract »    Full Text »    PDF »
Receptor Tyrosine Kinases in the Nucleus.
G. Carpenter and H.-J. Liao (2013)
Cold Spring Harb Perspect Biol 5, a008979
   Abstract »    Full Text »    PDF »
Biological Function of Nuclear Receptor Tyrosine Kinase Action.
S. Song, K. M. Rosen, and G. Corfas (2013)
Cold Spring Harb Perspect Biol 5, a009001
   Abstract »    Full Text »    PDF »
A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1.
Q. Xu, Y. Jiang, Y. Yin, Q. Li, J. He, Y. Jing, Y.-T. Qi, Q. Xu, W. Li, B. Lu, et al. (2013)
J Mol Cell Biol 5, 3-13
   Abstract »    Full Text »    PDF »
Upregulation of the E3 ligase NEDD4-1 by Oxidative Stress Degrades IGF-1 Receptor Protein in Neurodegeneration.
Y.-D. Kwak, B. Wang, J. J. Li, R. Wang, Q. Deng, S. Diao, Y. Chen, R. Xu, E. Masliah, H. Xu, et al. (2012)
J. Neurosci. 32, 10971-10981
   Abstract »    Full Text »    PDF »
The Gap Junction Channel Protein Connexin 43 Is Covalently Modified and Regulated by SUMOylation.
A. Kjenseth, T. A. Fykerud, S. Sirnes, J. Bruun, Z. Yohannes, M. Kolberg, Y. Omori, E. Rivedal, and E. Leithe (2012)
J. Biol. Chem. 287, 15851-15861
   Abstract »    Full Text »    PDF »
Nuclear IGF1R is a transcriptional co-activator of LEF1/TCF.
D. Warsito, S. Sjostrom, S. Andersson, O. Larsson, and B. Sehat (2012)
EMBO Rep. 13, 244-250
   Abstract »    Full Text »    PDF »
MT1-MMP regulates the PI3K{delta}{middle dot}Mi-2/NuRD-dependent control of macrophage immune function.
R. Shimizu-Hirota, W. Xiong, B. T. Baxter, S. L. Kunkel, I. Maillard, X.-W. Chen, F. Sabeh, R. Liu, X.-Y. Li, and S. J. Weiss (2012)
Genes & Dev. 26, 395-413
   Abstract »    Full Text »    PDF »
Insulin-like Growth Factor-I Receptor (IGF-IR) Translocates to Nucleus and Autoregulates IGF-IR Gene Expression in Breast Cancer Cells.
R. Sarfstein, M. Pasmanik-Chor, A. Yeheskel, L. Edry, N. Shomron, N. Warman, E. Wertheimer, S. Maor, L. Shochat, and H. Werner (2012)
J. Biol. Chem. 287, 2766-2776
   Abstract »    Full Text »    PDF »
Protein localization in disease and therapy.
M.-C. Hung and W. Link (2011)
J. Cell Sci. 124, 3381-3392
   Abstract »    Full Text »    PDF »
Signalling by insulin and IGF receptors: supporting acts and new players.
K. Siddle (2011)
J. Mol. Endocrinol. 47, R1-R10
   Abstract »    Full Text »    PDF »
The Translocon Sec61{beta} Localized in the Inner Nuclear Membrane Transports Membrane-embedded EGF Receptor to the Nucleus.
Y.-N. Wang, H. Yamaguchi, L. Huo, Y. Du, H.-J. Lee, H.-H. Lee, H. Wang, J.-M. Hsu, and M.-C. Hung (2010)
J. Biol. Chem. 285, 38720-38729
   Abstract »    Full Text »    PDF »
Small Is Beautiful: Insulin-Like Growth Factors and Their Role in Growth, Development, and Cancer.
R. G. Maki (2010)
J. Clin. Oncol. 28, 4985-4995
   Abstract »    Full Text »    PDF »
Type 1 Insulin-like Growth Factor Receptor Translocates to the Nucleus of Human Tumor Cells.
T. Aleksic, M. M. Chitnis, O. V. Perestenko, S. Gao, P. H. Thomas, G. D. Turner, A. S. Protheroe, M. Howarth, and V. M. Macaulay (2010)
Cancer Res. 70, 6412-6419
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882