Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 16 March 2010
Vol. 3, Issue 113, p. ra20
[DOI: 10.1126/scisignal.2000517]


Editor's Summary

Picking the Right Path
Signaling networks have become increasingly complex as large-scale analysis and experiments in multiple systems add new potential connections and players. Xu et al. present a mathematical approach to rank the possible paths through a signaling pathway and develop hypotheses that can be rationally tested. They call their approach BIBm for Bayesian inference–based modeling and apply BIBm to explore the signaling pathways by which epidermal growth factor (EGF) stimulates extracellular signal–regulated kinase (ERK). Using a limited set of biochemical experiments, the authors tested four models and found that the one that relied on two Raf family members ranked the highest. This model was then experimentally validated in two cell lines to show that both Raf-1 and B-Raf contribute to ERK activation in response to EGF.

Citation: T.-R. Xu, V. Vyshemirsky, A. Gormand, A. von Kriegsheim, M. Girolami, G. S. Baillie, D. Ketley, A. J. Dunlop, G. Milligan, M. D. Houslay, W. Kolch, Inferring Signaling Pathway Topologies from Multiple Perturbation Measurements of Specific Biochemical Species. Sci. Signal. 3, ra20 (2010).

Read the Full Text

Competing G protein-coupled receptor kinases balance G protein and {beta}-arrestin signaling.
D. Heitzler, G. Durand, N. Gallay, A. Rizk, S. Ahn, J. Kim, J. D. Violin, L. Dupuy, C. Gauthier, V. Piketty, et al. (2014)
Mol Syst Biol 8, 590
   Abstract »    Full Text »    PDF »
Properties of cell death models calibrated and compared using Bayesian approaches.
H. Eydgahi, W. W. Chen, J. L. Muhlich, D. Vitkup, J. N. Tsitsiklis, and P. K. Sorger (2014)
Mol Syst Biol 9, 644
   Abstract »    Full Text »    PDF »
Programming biological models in Python using PySB.
C. F. Lopez, J. L. Muhlich, J. A. Bachman, and P. K. Sorger (2014)
Mol Syst Biol 9, 646
   Abstract »    Full Text »    PDF »
Reverse engineering and identification in systems biology: strategies, perspectives and challenges.
A. F. Villaverde and J. R. Banga (2014)
J R Soc Interface 11, 20130505
   Abstract »    Full Text »    PDF »
Topological augmentation to infer hidden processes in biological systems.
M. Sunnaker, E. Zamora-Sillero, A. Lopez Garcia de Lomana, F. Rudroff, U. Sauer, J. Stelling, and A. Wagner (2014)
Bioinformatics 30, 221-227
   Abstract »    Full Text »    PDF »
Near-optimal experimental design for model selection in systems biology.
A. G. Busetto, A. Hauser, G. Krummenacher, M. Sunnaker, S. Dimopoulos, C. S. Ong, J. Stelling, and J. M. Buhmann (2013)
Bioinformatics 29, 2625-2632
   Abstract »    Full Text »    PDF »
Automatic Generation of Predictive Dynamic Models Reveals Nuclear Phosphorylation as the Key Msn2 Control Mechanism.
M. Sunnaker, E. Zamora-Sillero, R. Dechant, C. Ludwig, A. G. Busetto, A. Wagner, and J. Stelling (2013)
Science Signaling 6, ra41
   Abstract »    Full Text »    PDF »
Markov chain Monte Carlo inference for Markov jump processes via the linear noise approximation.
V. Stathopoulos and M. A. Girolami (2012)
Phil Trans R Soc A 371, 20110541
   Abstract »    Full Text »    PDF »
Bayesian Inference of Signaling Network Topology in a Cancer Cell Line.
S. M. Hill, Y. Lu, J. Molina, L. M. Heiser, P. T. Spellman, T. P. Speed, J. W. Gray, G. B. Mills, and S. Mukherjee (2012)
Bioinformatics 28, 2804-2810
   Abstract »    Full Text »    PDF »
The Response of Cancers to BRAF Inhibition Underscores the Importance of Cancer Systems Biology.
E. C. Stites (2012)
Science Signaling 5, pe46
   Abstract »    Full Text »    PDF »
Network inference using steady-state data and Goldbeter-koshland kinetics.
C. J. Oates, B. T. Hennessy, Y. Lu, G. B. Mills, and S. Mukherjee (2012)
Bioinformatics 28, 2342-2348
   Abstract »    Full Text »    PDF »
Identification of aberrant pathways and network activities from high-throughput data.
J. Wang, Y. Zhang, C. Marian, and H. W. Ressom (2012)
Brief Bioinform 13, 406-419
   Abstract »    Full Text »    PDF »
Computational Approaches for Analyzing Information Flow in Biological Networks.
B. Kholodenko, M. B. Yaffe, and W. Kolch (2012)
Science Signaling 5, re1
   Abstract »    Full Text »    PDF »
A Dynamic Network Model of mTOR Signaling Reveals TSC-Independent mTORC2 Regulation.
P. Dalle Pezze, A. G. Sonntag, A. Thien, M. T. Prentzell, M. Godel, S. Fischer, E. Neumann-Haefelin, T. B. Huber, R. Baumeister, D. P. Shanley, et al. (2012)
Science Signaling 5, ra25
   Abstract »    Full Text »    PDF »
Optimal structural inference of signaling pathways from unordered and overlapping gene sets.
L. R. Acharya, T. Judeh, G. Wang, and D. Zhu (2012)
Bioinformatics 28, 546-556
   Abstract »    Full Text »    PDF »
Statistical analysis of nonlinear dynamical systems using differential geometric sampling methods.
B. Calderhead and M. Girolami (2011)
Interface Focus 1, 821-835
   Abstract »    Full Text »    PDF »
Spatiotemporally Regulated Protein Kinase A Activity Is a Critical Regulator of Growth Factor-Stimulated Extracellular Signal-Regulated Kinase Signaling in PC12 Cells.
K. J. Herbst, M. D. Allen, and J. Zhang (2011)
Mol. Cell. Biol. 31, 4063-4075
   Abstract »    Full Text »    PDF »
Raf Family Kinases: Old Dogs Have Learned New Tricks.
D. Matallanas, M. Birtwistle, D. Romano, A. Zebisch, J. Rauch, A. von Kriegsheim, and W. Kolch (2011)
Genes & Cancer 2, 232-260
   Abstract »    Full Text »    PDF »
Regulation by Ca2+-Signaling Pathways of Adenylyl Cyclases.
M. L. Halls and D. M. F. Cooper (2011)
Cold Spring Harb Perspect Biol 3, a004143
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882