Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. Signal., 13 April 2010
Vol. 3, Issue 117, p. ra29
[DOI: 10.1126/scisignal.2000594]

RESEARCH ARTICLES

Editor's Summary

A Malignant Combination
The abundance of microRNAs (miRNAs), tiny non–protein-coding RNAs that act as posttranscriptional regulators of gene expression, is frequently altered in cancer; indeed, various miRNAs are thought to act as oncogenes or tumor suppressors. Poliseno et al. investigated the possible role of miRNA regulation of the tumor suppressor PTEN in prostate cancer. They identified miRNAs from several families that targeted the gene encoding PTEN, thereby decreasing PTEN abundance, and showed that the abundance of some of these miRNAs was increased in human prostate cancer. Intriguingly, three PTEN-targeting miRNAs located within an intron of the gene encoding the DNA helicase minichromosome maintenance protein 7 (MCM7), which shows increased abundance in various human cancers, cooperated with MCM7 to transform fibroblasts in vitro and to initiate tumors when overexpressed in the prostates of transgenic mice. Thus, the MCM7 gene locus appears to encode multiple oncogenic elements that cooperate to promote prostate cancer development.

Citation: L. Poliseno, L. Salmena, L. Riccardi, A. Fornari, M. S. Song, R. M. Hobbs, P. Sportoletti, S. Varmeh, A. Egia, G. Fedele, L. Rameh, M. Loda, P. P. Pandolfi, Identification of the miR-106b~25 MicroRNA Cluster as a Proto-Oncogenic PTEN-Targeting Intron That Cooperates with Its Host Gene MCM7 in Transformation. Sci. Signal. 3, ra29 (2010).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
MicroRNAs in the development and pathobiology of uterine leiomyomata: does evidence support future strategies for clinical intervention?.
A. E. Karmon, E. R. Cardozo, B. R. Rueda, and A. K. Styer (2014)
Hum. Reprod. Update
   Abstract »    Full Text »    PDF »
microRNAs are biomarkers of oncogenic human papillomavirus infections.
X. Wang, H.-K. Wang, Y. Li, M. Hafner, N. S. Banerjee, S. Tang, D. Briskin, C. Meyers, L. T. Chow, X. Xie, et al. (2014)
PNAS 111, 4262-4267
   Abstract »    Full Text »    PDF »
Potentially Prognostic miRNAs in HPV-Associated Oropharyngeal Carcinoma.
A. B. Y. Hui, A. Lin, W. Xu, L. Waldron, B. Perez-Ordonez, I. Weinreb, W. Shi, J. Bruce, S. H. Huang, B. O'Sullivan, et al. (2013)
Clin. Cancer Res. 19, 2154-2162
   Abstract »    Full Text »    PDF »
The 106b~25 microRNA cluster is essential for neovascularization after hindlimb ischaemia in mice.
J. Semo, R. Sharir, A. Afek, C. Avivi, I. Barshack, S. Maysel-Auslender, Y. Krelin, D. Kain, M. Entin-Meer, G. Keren, et al. (2013)
Eur. Heart J.
   Abstract »    Full Text »    PDF »
A Myc-microRNA network promotes exit from quiescence by suppressing the interferon response and cell-cycle arrest genes.
D. Polioudakis, A. A. Bhinge, P. J. Killion, B.-K. Lee, N. S. Abell, and V. R. Iyer (2013)
Nucleic Acids Res. 41, 2239-2254
   Abstract »    Full Text »    PDF »
MicroRNA-144 promotes cell proliferation, migration and invasion in nasopharyngeal carcinoma through repression of PTEN.
L.-Y. Zhang, V. Ho-Fun Lee, A. M. G. Wong, D. L.-W. Kwong, Y.-H. Zhu, S.-S. Dong, K.-L. Kong, J. Chen, S.-W. Tsao, X.-Y. Guan, et al. (2013)
Carcinogenesis 34, 454-463
   Abstract »    Full Text »    PDF »
miR-3151 interplays with its host gene BAALC and independently affects outcome of patients with cytogenetically normal acute myeloid leukemia.
A.-K. Eisfeld, G. Marcucci, K. Maharry, S. Schwind, M. D. Radmacher, D. Nicolet, H. Becker, K. Mrozek, S. P. Whitman, K. H. Metzeler, et al. (2012)
Blood 120, 249-258
   Abstract »    Full Text »    PDF »
Human ESC Self-renewal Promoting microRNAs Induce Epithelial-Mesenchymal Transition in Hepatocytes by Controlling the PTEN and TGF{beta} Tumor Suppressor Signaling Pathways.
C. J. Jung, S. Iyengar, K. R. Blahnik, J. X. Jiang, C. Tahimic, N. J. Torok, R. W. de vere White, P. J. Farnham, and M. Zern (2012)
Mol. Cancer Res. 10, 979-991
   Abstract »    Full Text »    PDF »
MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer.
R. S. Hudson, M. Yi, D. Esposito, S. K. Watkins, A. A. Hurwitz, H. G. Yfantis, D. H. Lee, J. F. Borin, M. J. Naslund, R. B. Alexander, et al. (2012)
Nucleic Acids Res. 40, 3689-3703
   Abstract »    Full Text »    PDF »
Serum microRNA profiling and breast cancer risk: the use of miR-484/191 as endogenous controls.
Z. Hu, J. Dong, L.-E. Wang, H. Ma, J. Liu, Y. Zhao, J. Tang, X. Chen, J. Dai, Q. Wei, et al. (2012)
Carcinogenesis 33, 828-834
   Abstract »    Full Text »    PDF »
Prioritizing human cancer microRNAs based on genes' functional consistency between microRNA and cancer.
X. Li, Q. Wang, Y. Zheng, S. Lv, S. Ning, J. Sun, T. Huang, Q. Zheng, H. Ren, J. Xu, et al. (2011)
Nucleic Acids Res. 39, e153
   Abstract »    Full Text »    PDF »
Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response.
I. Lipchina, Y. Elkabetz, M. Hafner, R. Sheridan, A. Mihailovic, T. Tuschl, C. Sander, L. Studer, and D. Betel (2011)
Genes & Dev. 25, 2173-2186
   Abstract »    Full Text »    PDF »
PTEN Protein Loss by Immunostaining: Analytic Validation and Prognostic Indicator for a High Risk Surgical Cohort of Prostate Cancer Patients.
T. L. Lotan, B. Gurel, S. Sutcliffe, D. Esopi, W. Liu, J. Xu, J. L. Hicks, B. H. Park, E. Humphreys, A. W. Partin, et al. (2011)
Clin. Cancer Res. 17, 6563-6573
   Abstract »    Full Text »    PDF »
miR-17~92 cooperates with RB pathway mutations to promote retinoblastoma.
K. Conkrite, M. Sundby, S. Mukai, J. M. Thomson, D. Mu, S. M. Hammond, and D. MacPherson (2011)
Genes & Dev. 25, 1734-1745
   Abstract »    Full Text »    PDF »
MicroRNAs Add an Additional Layer to the Complexity of Cell Signaling.
J. I. Herschkowitz and X. Fu (2011)
Science Signaling 4, jc5
   Abstract »    Full Text »    PDF »
Tumor Suppressor miR-22 Determines p53-Dependent Cellular Fate through Post-transcriptional Regulation of p21.
N. Tsuchiya, M. Izumiya, H. Ogata-Kawata, K. Okamoto, Y. Fujiwara, M. Nakai, A. Okabe, A. J. Schetter, E. D. Bowman, Y. Midorikawa, et al. (2011)
Cancer Res. 71, 4628-4639
   Abstract »    Full Text »    PDF »
MicroRNAs as Regulators of Signal Transduction in Urological Tumors.
A. Fendler, C. Stephan, G. M. Yousef, and K. Jung (2011)
Clin. Chem. 57, 954-968
   Abstract »    Full Text »    PDF »
Cancer and neurodegenerative disorders: pathogenic convergence through microRNA regulation.
L. Du and A. Pertsemlidis (2011)
J Mol Cell Biol 3, 176-180
   Abstract »    Full Text »    PDF »
miTALOS: Analyzing the tissue-specific regulation of signaling pathways by human and mouse microRNAs.
A. Kowarsch, M. Preusse, C. Marr, and F. J. Theis (2011)
RNA 17, 809-819
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 4 January 2011.
M. B. Yaffe and A. M. VanHook (2011)
Science Signaling 4, pc1
   Abstract »    Full Text »
Posttranscriptional Regulation of PTEN Dosage by Noncoding RNAs.
L. He (2010)
Science Signaling 3, pe39
   Abstract »    Full Text »    PDF »
From man to mouse and back again: advances in defining tumor AKTivities in vivo.
D. F. Restuccia and B. A. Hemmings (2010)
Dis. Model. Mech. 3, 705-720
   Abstract »    Full Text »    PDF »
Basal and Treatment-Induced Activation of AKT Mediates Resistance to Cell Death by AZD6244 (ARRY-142886) in Braf-Mutant Human Cutaneous Melanoma Cells.
Y. N. V. Gopal, W. Deng, S. E. Woodman, K. Komurov, P. Ram, P. D. Smith, and M. A. Davies (2010)
Cancer Res. 70, 8736-8747
   Abstract »    Full Text »    PDF »
Molecular genetics of prostate cancer: new prospects for old challenges.
M. M. Shen and C. Abate-Shen (2010)
Genes & Dev. 24, 1967-2000
   Abstract »    Full Text »    PDF »
PI(3)King Apart PTEN's Role in Cancer.
S. Zhang and D. Yu (2010)
Clin. Cancer Res. 16, 4325-4330
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882