Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 1 June 2010
Vol. 3, Issue 124, p. ra43
[DOI: 10.1126/scisignal.2000876]


Editor's Summary

A Loss of Restraint
Growth factors, such as epidermal growth factor (EGF), bind to receptors to stimulate cell proliferation, a process critical during development and in wound healing. Dysregulation of the signaling pathways initiated by the EGF receptor (EGFR) has been implicated in cancer. Noting that aberrant expression of microRNAs, small noncoding RNAs that inhibit the expression of target genes, is common in human malignancies, Avraham et al. explored the role of microRNAs in regulating EGFR signaling. They found that EGF elicited a rapid—and transient—decrease in the abundance of a group of 23 microRNAs, thereby enabling the induction of potentially oncogenic transcription factor targets. Moreover, the abundance of this group of microRNAs was decreased in breast cancers and brain cancers with molecular lesions consistent with increased EGFR signaling. The authors conclude that, under basal conditions, this group of microRNAs restrains potentially oncogenic signaling pathways downstream of the EGFR. Their decreased abundance in cancer thus enables the dysregulated activity of oncogenic transcription factors and signaling pathways transiently activated by EGF signaling, thereby promoting the aberrant cellular behaviors associated with cancer.

Citation: R. Avraham, A. Sas-Chen, O. Manor, I. Steinfeld, R. Shalgi, G. Tarcic, N. Bossel, A. Zeisel, I. Amit, Y. Zwang, E. Enerly, H. G. Russnes, F. Biagioni, M. Mottolese, S. Strano, G. Blandino, A.-L. Børresen-Dale, Y. Pilpel, Z. Yakhini, E. Segal, Y. Yarden, EGF Decreases the Abundance of MicroRNAs That Restrain Oncogenic Transcription Factors. Sci. Signal. 3, ra43 (2010).

Read the Full Text

Coupled pre-mRNA and mRNA dynamics unveil operational strategies underlying transcriptional responses to stimuli.
A. Zeisel, W. J. Kostler, N. Molotski, J. M. Tsai, R. Krauthgamer, J. Jacob-Hirsch, G. Rechavi, Y. Soen, S. Jung, Y. Yarden, et al. (2014)
Mol Syst Biol 7, 529
   Abstract »    Full Text »    PDF »
Reverse engineering a hierarchical regulatory network downstream of oncogenic KRAS.
I. Stelniec-Klotz, S. Legewie, O. Tchernitsa, F. Witzel, B. Klinger, C. Sers, H. Herzel, N. Bluthgen, and R. Schafer (2014)
Mol Syst Biol 8, 601
   Abstract »    Full Text »    PDF »
miRNAs versus oncogenes: the power of social networking.
M. Malumbres (2014)
Mol Syst Biol 8, 569
   Full Text »    PDF »
Visualizing and Manipulating Temporal Signaling Dynamics with Fluorescence-Based Tools.
D. P. Doupe and N. Perrimon (2014)
Science Signaling 7, re1
   Abstract »    Full Text »    PDF »
Suppression of MicroRNA-9 by Mutant EGFR Signaling Upregulates FOXP1 to Enhance Glioblastoma Tumorigenicity.
G. G. Gomez, S. Volinia, C. M. Croce, C. Zanca, M. Li, R. Emnett, D. H. Gutmann, C. W. Brennan, F. B. Furnari, and W. K. Cavenee (2014)
Cancer Res. 74, 1429-1439
   Abstract »    Full Text »    PDF »
miRNA target enrichment analysis reveals directly active miRNAs in health and disease.
I. Steinfeld, R. Navon, R. Ach, and Z. Yakhini (2013)
Nucleic Acids Res. 41, e45
   Abstract »    Full Text »    PDF »
Spatial localization of co-regulated genes exceeds genomic gene clustering in the Saccharomyces cerevisiae genome.
S. Ben-Elazar, Z. Yakhini, and I. Yanai (2013)
Nucleic Acids Res. 41, 2191-2201
   Abstract »    Full Text »    PDF »
Context-specific microRNA analysis: identification of functional microRNAs and their mRNA targets.
N. Bossel Ben-Moshe, R. Avraham, M. Kedmi, A. Zeisel, A. Yitzhaky, Y. Yarden, and E. Domany (2012)
Nucleic Acids Res. 40, 10614-10627
   Abstract »    Full Text »    PDF »
Effects of {beta}4 integrin expression on microRNA patterns in breast cancer.
K. D. Gerson, V. S. R. K. Maddula, B. E. Seligmann, J. R. Shearstone, A. Khan, and A. M. Mercurio (2012)
Biology Open 1, 658-666
   Abstract »    Full Text »    PDF »
EGR1 and the ERK-ERF axis drive mammary cell migration in response to EGF.
G. Tarcic, R. Avraham, G. Pines, I. Amit, T. Shay, Y. Lu, Y. Zwang, M. Katz, N. Ben-Chetrit, J. Jacob-Hirsch, et al. (2012)
FASEB J 26, 1582-1592
   Abstract »    Full Text »    PDF »
MicroRNAs Add an Additional Layer to the Complexity of Cell Signaling.
J. I. Herschkowitz and X. Fu (2011)
Science Signaling 4, jc5
   Abstract »    Full Text »    PDF »
EGFR Signals Downregulate Tumor Suppressors miR-143 and miR-145 in Western Diet-Promoted Murine Colon Cancer: Role of G1 Regulators.
H. Zhu, U. Dougherty, V. Robinson, R. Mustafi, J. Pekow, S. Kupfer, Y.-C. Li, J. Hart, K. Goss, A. Fichera, et al. (2011)
Mol. Cancer Res. 9, 960-975
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 4 January 2011.
M. B. Yaffe and A. M. VanHook (2011)
Science Signaling 4, pc1
   Abstract »    Full Text »
The Biological Framework: Translational Research from Bench to Clinic.
Y. Yarden (2011)
Oncologist 16, 23-29
   Abstract »    Full Text »    PDF »
The Biological Framework: Translational Research from Bench to Clinic.
Y. Yarden (2010)
Oncologist 15, 1-7
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882