Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. Signal., 8 June 2010
Vol. 3, Issue 125, p. ra46
[DOI: 10.1126/scisignal.2000769]

RESEARCH ARTICLES

Editor's Summary

An Arrestin Stretch
Activation of G protein–coupled receptors (GPCRs) can selectively trigger distinct signaling cascades through a process known as biased agonism. Mechanical stress has been linked to activation of the angiotensin type I receptor (AT1R) in a manner that does not require its ligand (angiotensin II). Rakesh et al. found that, in cells and ex vivo heart preparations, mechanical stress activated a signaling pathway that required neither angiotensin II nor G proteins. Instead, β-arrestin was recruited to AT1R, the complex was internalized, and β-arrestin activated an antiapoptotic signaling pathway through extracellular signal–regulated kinase (ERK) and Akt. Treating mice with the angiotensin receptor blocker losartan led to increased cardiomyocyte apoptosis, leading the authors to suggest that these drugs may block β-arrestin–mediated protective signaling in response to mechanical stress.

Citation: K. Rakesh, B. Yoo, I.-M. Kim, N. Salazar, K.-S. Kim, H. A. Rockman, β-Arrestin–Biased Agonism of the Angiotensin Receptor Induced by Mechanical Stress. Sci. Signal. 3, ra46 (2010).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Negative Impact of {beta}-Arrestin-1 on Post-Myocardial Infarction Heart Failure via Cardiac and Adrenal-Dependent Neurohormonal Mechanisms.
A. Bathgate-Siryk, S. Dabul, K. Pandya, K. Walklett, G. Rengo, A. Cannavo, C. De Lucia, D. Liccardo, E. Gao, D. Leosco, et al. (2014)
Hypertension 63, 404-412
   Abstract »    Full Text »    PDF »
Solving the Cardiac Hypertrophy Riddle: The Angiotensin II-Mechanical Stress Connection.
D. Zablocki and J. Sadoshima (2013)
Circ. Res. 113, 1192-1195
   Full Text »    PDF »
Decoding Signaling and Function of the Orphan G Protein-Coupled Receptor GPR17 with a Small-Molecule Agonist.
S. Hennen, H. Wang, L. Peters, N. Merten, K. Simon, A. Spinrath, S. Blattermann, R. Akkari, R. Schrage, R. Schroder, et al. (2013)
Science Signaling 6, ra93
   Abstract »    Full Text »    PDF »
The {beta}-arrestin-biased ligand TRV120023 inhibits angiotensin II-induced cardiac hypertrophy while preserving enhanced myofilament response to calcium.
M. M. Monasky, D. M. Taglieri, M. Henze, C. M. Warren, M. S. Utter, D. G. Soergel, J. D. Violin, and R. J. Solaro (2013)
Am J Physiol Heart Circ Physiol 305, H856-H866
   Abstract »    Full Text »    PDF »
Aortic Remodeling After Transverse Aortic Constriction in Mice Is Attenuated With AT1 Receptor Blockade.
S.-Q. Kuang, L. Geng, S. K. Prakash, J.-M. Cao, S. Guo, C. Villamizar, C. S. Kwartler, A. M. Peters, A. R. Brasier, and D. M. Milewicz (2013)
Arterioscler Thromb Vasc Biol 33, 2172-2179
   Abstract »    Full Text »    PDF »
Capitalizing on diversity: an integrative approach towards the multiplicity of cellular mechanisms underlying myogenic responsiveness.
D. Lidington, R. Schubert, and S.-S. Bolz (2013)
Cardiovasc Res 97, 404-412
   Abstract »    Full Text »    PDF »
Long Range Effect of Mutations on Specific Conformational Changes in the Extracellular Loop 2 of Angiotensin II Type 1 Receptor.
H. Unal, R. Jagannathan, A. Bhatnagar, K. Tirupula, R. Desnoyer, and S. S. Karnik (2013)
J. Biol. Chem. 288, 540-551
   Abstract »    Full Text »    PDF »
{beta}-Arrestin-biased AT1R stimulation promotes cell survival during acute cardiac injury.
K.-S. Kim, D. Abraham, B. Williams, J. D. Violin, L. Mao, and H. A. Rockman (2012)
Am J Physiol Heart Circ Physiol 303, H1001-H1010
   Abstract »    Full Text »    PDF »
Induction of Cardiac Fibrosis by {beta}-Blocker in G Protein-independent and G Protein-coupled Receptor Kinase 5/{beta}-Arrestin2-dependent Signaling Pathways.
M. Nakaya, S. Chikura, K. Watari, N. Mizuno, K. Mochinaga, S. Mangmool, S. Koyanagi, S. Ohdo, Y. Sato, T. Ide, et al. (2012)
J. Biol. Chem. 287, 35669-35677
   Abstract »    Full Text »    PDF »
TRV120027, a Novel {beta}-Arrestin Biased Ligand at the Angiotensin II Type I Receptor, Unloads the Heart and Maintains Renal Function When Added to Furosemide in Experimental Heart Failure.
G. Boerrigter, D. G. Soergel, J. D. Violin, M. W. Lark, and J. C. Burnett Jr (2012)
Circ Heart Fail 5, 627-634
   Abstract »    Full Text »    PDF »
Differential {beta}-Arrestin-Dependent Conformational Signaling and Cellular Responses Revealed by Angiotensin Analogs.
B. Zimmerman, A. Beautrait, B. Aguila, R. Charles, E. Escher, A. Claing, M. Bouvier, and S. A. Laporte (2012)
Science Signaling 5, ra33
   Abstract »    Full Text »    PDF »
G protein-mediated stretch reception.
U. Storch, M. M. y. Schnitzler, and T. Gudermann (2012)
Am J Physiol Heart Circ Physiol 302, H1241-H1249
   Abstract »    Full Text »    PDF »
Agonist-Independent Constitutive Activity of Angiotensin II Receptor Promotes Cardiac Remodeling in Mice.
N. Yasuda, H. Akazawa, K. Ito, I. Shimizu, Y. Kudo-Sakamoto, C. Yabumoto, M. Yano, R. Yamamoto, Y. Ozasa, T. Minamino, et al. (2012)
Hypertension 59, 627-633
   Abstract »    Full Text »    PDF »
G Protein Coupled Receptor Kinases as Therapeutic Targets in Cardiovascular Disease.
S. L. Belmonte and B. C. Blaxall (2011)
Circ. Res. 109, 309-319
   Abstract »    Full Text »    PDF »
Biased Ligands for Better Cardiovascular Drugs: Dissecting G-Protein-Coupled Receptor Pharmacology.
S. M. DeWire and J. D. Violin (2011)
Circ. Res. 109, 205-216
   Abstract »    Full Text »    PDF »
G Protein-Dependent and G Protein-Independent Signaling Pathways and Their Impact on Cardiac Function.
D. G. Tilley (2011)
Circ. Res. 109, 217-230
   Abstract »    Full Text »    PDF »
Determination of the Exact Molecular Requirements for Type 1 Angiotensin Receptor Epidermal Growth Factor Receptor Transactivation and Cardiomyocyte Hypertrophy.
N. J. Smith, H.-W. Chan, H. Qian, A. M. Bourne, K. M. Hannan, F. J. Warner, R. H. Ritchie, R. B. Pearson, R. D. Hannan, and W. G. Thomas (2011)
Hypertension 57, 973-980
   Abstract »    Full Text »    PDF »
Computational Models Reduce Complexity and Accelerate Insight Into Cardiac Signaling Networks.
J. H. Yang and J. J. Saucerman (2011)
Circ. Res. 108, 85-97
   Abstract »    Full Text »    PDF »
Differential effects of alendronate and losartan therapy on osteopenia and aortic aneurysm in mice with severe Marfan syndrome.
H. Nistala, S. Lee-Arteaga, L. Carta, J. R. Cook, S. Smaldone, G. Siciliano, A. N. Rifkin, H. C. Dietz, D. B. Rifkin, and F. Ramirez (2010)
Hum. Mol. Genet. 19, 4790-4798
   Abstract »    Full Text »    PDF »
Functional Selectivity in Adrenergic and Angiotensin Signaling Systems.
C. B. Patel, N. Noor, and H. A. Rockman (2010)
Mol. Pharmacol. 78, 983-992
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 8 June 2010.
H. A. Rockman and A. M. VanHook (2010)
Science Signaling 3, pc12
   Abstract »    Full Text »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882