Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 9 November 2010
Vol. 3, Issue 147, p. ra81
[DOI: 10.1126/scisignal.2001017]


Editor's Summary

Blocking All Escape Routes
Many cancers, including glioma, are associated with increased signaling through the phosphatidylinositol 3-kinase to Akt to mammalian target of rapamycin (PI3K-Akt-mTOR) pathway, which promotes cell growth, proliferation, and survival. This suggests that pharmacological inhibition of key kinases in this pathway could provide an approach to antineoplastic therapy. Disappointingly, however, inhibitors of PI3K, Akt, or mTOR typically block cancer cell growth rather than eliciting the death of malignant cells, limiting their utility as antineoplastic agents. Noting that autophagy, a process of autodigestion that can enable cells to endure periods of stress and nutrient deprivation, could provide a survival mechanism under conditions of decreased PI3K-Akt-mTOR signaling, Fan et al. explored the effects of various combinations of kinase and autophagy inhibitors on glioma cell survival. Inhibition of mTOR complex 1 (mTORC1) with rapamycin induced autophagy; however, cells survived the combination of rapamycin with inhibitors of autophagy by activating Akt signaling. In contrast, the combined inhibition of mTORC1, PI3K, and autophagy, or that of mTORC1, mTORC2, and autophagy, triggered apoptosis—the process of programmed cell death. The authors elicited cell death with combinations of drugs that are either now in use in patients or in clinical trials, raising the hope that this approach could be readily translatable to human therapy.

Citation: Q.-W. Fan, C. Cheng, C. Hackett, M. Feldman, B. T. Houseman, T. Nicolaides, D. Haas-Kogan, C. D. James, S. A. Oakes, J. Debnath, K. M. Shokat, W. A. Weiss, Akt and Autophagy Cooperate to Promote Survival of Drug-Resistant Glioma. Sci. Signal. 3, ra81 (2010).

Read the Full Text

The AMPK Inhibitor Compound C Is a Potent AMPK-Independent Antiglioma Agent.
X. Liu, R. R. Chhipa, I. Nakano, and B. Dasgupta (2014)
Mol. Cancer Ther. 13, 596-605
   Abstract »    Full Text »    PDF »
EXPANDS: expanding ploidy and allele frequency on nested subpopulations.
N. Andor, J. V. Harness, S. Muller, H. W. Mewes, and C. Petritsch (2014)
Bioinformatics 30, 50-60
   Abstract »    Full Text »    PDF »
The mTOR Kinase Inhibitors, CC214-1 and CC214-2, Preferentially Block the Growth of EGFRvIII-Activated Glioblastomas.
B. Gini, C. Zanca, D. Guo, T. Matsutani, K. Masui, S. Ikegami, H. Yang, D. Nathanson, G. R. Villa, D. Shackelford, et al. (2013)
Clin. Cancer Res. 19, 5722-5732
   Abstract »    Full Text »    PDF »
Inhibition of glioma growth by minocycline is mediated through endoplasmic reticulum stress-induced apoptosis and autophagic cell death.
W.-T. Liu, C.-Y. Huang, I.-C. Lu, and P.-W. Gean (2013)
Neuro Oncology 15, 1127-1141
   Abstract »    Full Text »    PDF »
KEAP1-Dependent Synthetic Lethality Induced by AKT and TXNRD1 Inhibitors in Lung Cancer.
B. Dai, S.-Y. Yoo, G. Bartholomeusz, R. A. Graham, M. Majidi, S. Yan, J. Meng, L. Ji, K. Coombes, J. D. Minna, et al. (2013)
Cancer Res. 73, 5532-5543
   Abstract »    Full Text »    PDF »
Therapeutic Targeting of Autophagy in Disease: Biology and Pharmacology.
Y. Cheng, X. Ren, W. N. Hait, and J.-M. Yang (2013)
Pharmacol. Rev. 65, 1162-1197
   Abstract »    Full Text »    PDF »
Blocked Autophagy Using Lysosomotropic Agents Sensitizes Resistant Prostate Tumor Cells to the Novel Akt Inhibitor AZD5363.
F. Lamoureux, C. Thomas, C. Crafter, M. Kumano, F. Zhang, B. R. Davies, M. E. Gleave, and A. Zoubeidi (2013)
Clin. Cancer Res. 19, 833-844
   Abstract »    Full Text »    PDF »
Inhibition of Autophagy as a Strategy to Augment Radiosensitization by the Dual Phosphatidylinositol 3-Kinase/Mammalian Target of Rapamycin Inhibitor NVP-BEZ235.
G. J. Cerniglia, J. Karar, S. Tyagi, M. Christofidou-Solomidou, R. Rengan, C. Koumenis, and A. Maity (2012)
Mol. Pharmacol. 82, 1230-1240
   Abstract »    Full Text »    PDF »
Counteracting Autophagy Overcomes Resistance to Everolimus in Mantle Cell Lymphoma.
L. Rosich, S. Xargay-Torrent, M. Lopez-Guerra, E. Campo, D. Colomer, and G. Roue (2012)
Clin. Cancer Res. 18, 5278-5289
   Abstract »    Full Text »    PDF »
Dual blockade of lipid and cyclin-dependent kinases induces synthetic lethality in malignant glioma.
C. K. Cheng, W. C. Gustafson, E. Charron, B. T. Houseman, E. Zunder, A. Goga, N. S. Gray, B. Pollok, S. A. Oakes, C. D. James, et al. (2012)
PNAS 109, 12722-12727
   Abstract »    Full Text »    PDF »
Current clinical development of PI3K pathway inhibitors in glioblastoma.
P. Y. Wen, E. Q. Lee, D. A. Reardon, K. L. Ligon, and W. K. Alfred Yung (2012)
Neuro Oncology 14, 819-829
   Abstract »    Full Text »    PDF »
mTOR Inhibitors Synergize on Regression, Reversal of Gene Expression, and Autophagy in Hepatocellular Carcinoma.
H. E. Thomas, C. A. Mercer, L. S. Carnevalli, J. Park, J. B. Andersen, E. A. Conner, K. Tanaka, T. Matsutani, A. Iwanami, B. J. Aronow, et al. (2012)
Science Translational Medicine 4, 139ra84
   Abstract »    Full Text »    PDF »
Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency.
Q. McAfee, Z. Zhang, A. Samanta, S. M. Levi, X.-H. Ma, S. Piao, J. P. Lynch, T. Uehara, A. R. Sepulveda, L. E. Davis, et al. (2012)
PNAS 109, 8253-8258
   Abstract »    Full Text »    PDF »
Autophagy and cancer - issues we need to digest.
E. Y. Liu and K. M. Ryan (2012)
J. Cell Sci. 125, 2349-2358
   Abstract »    Full Text »    PDF »
Role of autophagy in histone deacetylase inhibitor-induced apoptotic and nonapoptotic cell death.
N. Gammoh, D. Lam, C. Puente, I. Ganley, P. A. Marks, and X. Jiang (2012)
PNAS 109, 6561-6565
   Abstract »    Full Text »    PDF »
Emerging insights into the molecular and cellular basis of glioblastoma.
G. P. Dunn, M. L. Rinne, J. Wykosky, G. Genovese, S. N. Quayle, I. F. Dunn, P. K. Agarwalla, M. G. Chheda, B. Campos, A. Wang, et al. (2012)
Genes & Dev. 26, 756-784
   Abstract »    Full Text »    PDF »
Autophagy Inhibition Synergistically Enhances Anticancer Efficacy of RAMBA, VN/12-1 in SKBR-3 Cells, and Tumor Xenografts.
A. M. Godbole, P. Purushottamachar, M. S. Martin, C. Daskalakis, and V. C. O. Njar (2012)
Mol. Cancer Ther. 11, 898-908
   Abstract »    Full Text »    PDF »
Lysosomal Transmembrane Protein LAPTM4B Promotes Autophagy and Tolerance to Metabolic Stress in Cancer Cells.
Y. Li, Q. Zhang, R. Tian, Q. Wang, J. J. Zhao, J. D. Iglehart, Z. C. Wang, and A. L. Richardson (2011)
Cancer Res. 71, 7481-7489
   Abstract »    Full Text »    PDF »
Targeting Energy Metabolic and Oncogenic Signaling Pathways in Triple-negative Breast Cancer by a Novel Adenosine Monophosphate-activated Protein Kinase (AMPK) Activator.
K.-H. Lee, E.-C. Hsu, J.-H. Guh, H.-C. Yang, D. Wang, S. K. Kulp, C. L. Shapiro, and C.-S. Chen (2011)
J. Biol. Chem. 286, 39247-39258
   Abstract »    Full Text »    PDF »
The Role of Autophagy in Cancer: Therapeutic Implications.
Z. J. Yang, C. E. Chee, S. Huang, and F. A. Sinicrope (2011)
Mol. Cancer Ther. 10, 1533-1541
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 4 January 2011.
M. B. Yaffe and A. M. VanHook (2011)
Science Signaling 4, pc1
   Abstract »    Full Text »
Science Signaling Podcast: 9 November 2010.
R. D. Fields and A. M. VanHook (2010)
Science Signaling 3, pc20
   Abstract »    Full Text »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882