Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. Signal., 5 June 2012
Vol. 5, Issue 227, p. ra41
[DOI: 10.1126/scisignal.2003002]

RESEARCH ARTICLES

Editor's Summary

The Heart of the Matrix
Cardiosphere-derived cells (CDCs) are adult stem cells with the potential to differentiate into endothelial cells and cardiomyocytes, which are the major cell types of the heart. Their potential to induce cardiac regeneration after myocardial infarct is currently being clinically tested. Kshitiz et al. showed that CDCs cultured on a substrate with a rigidity matching that of normal myocardium yielded higher proportions of cells with the adhesion molecule CD31 (a marker of differentiated endothelial cells) than did those cultured on less or more rigid substrata. CDCs cultured on substratum equivalent in rigidity to the myocardium developed into organized cellular networks reminiscent of blood vessels and appeared to integrate more efficiently into the vasculature of ischemic rat myocardium. The process of sensing substratum rigidity occurred throughout the in vitro culture period, and the signaling pathway involved required the guanosine triphosphatase (GTPase)–activating protein p190RhoGAP acting through various downstream effectors, including the GTPase RhoA. These results could potentially increase the efficacy of regenerative therapies that use CDCs to repair hearts after myocardial infarction.

Citation: Kshitiz, M. E. Hubbi, E. H. Ahn, J. Downey, J. Afzal, D.-H. Kim, S. Rey, C. Chang, A. Kundu, G. L. Semenza, R. M. Abraham, A. Levchenko, Matrix Rigidity Controls Endothelial Differentiation and Morphogenesis of Cardiac Precursors. Sci. Signal. 5, ra41 (2012).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Chaperone-mediated Autophagy Targets Hypoxia-inducible Factor-1{alpha} (HIF-1{alpha}) for Lysosomal Degradation.
M. E. Hubbi, H. Hu, Kshitiz, I. Ahmed, A. Levchenko, and G. L. Semenza (2013)
J. Biol. Chem. 288, 10703-10714
   Abstract »    Full Text »    PDF »
A Nontranscriptional Role for HIF-1{alpha} as a Direct Inhibitor of DNA Replication.
M. E. Hubbi, Kshitiz, D. M. Gilkes, S. Rey, C. C. Wong, W. Luo, D.-H. Kim, C. V. Dang, A. Levchenko, and G. L. Semenza (2013)
Science Signaling 6, ra10
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882