Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 287 (5459): 1765-1766

Copyright © 2000 by the American Association for the Advancement of Science

CELL CYCLE:
Piecing Together the p53 Puzzle

Antony M. Carr

When the DNA of a cell is damaged, a network of proteins tell the cell to stop at the nearest cell cycle checkpoint so that the DNA repair machinery can set about shoring up the damage and the cell can decide whether to continue proliferating. In a Perspective, Carr discusses new findings (Hirao et al.) showing that the checkpoint kinase CHK2 regulates a crucial central player in checkpoint pathways-the tumor suppressor protein p53.


The author is at the MRC Cell Mutation Unit, Sussex University, Falmer, Brighton BN1 9RR, UK. E-mail: a.m.carr{at}sussex.ac.uk


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Angiogenesis and Cardiac Hypertrophy: Maintenance of Cardiac Function and Causative Roles in Heart Failure.
T. Oka, H. Akazawa, A. T. Naito, and I. Komuro (2014)
Circ. Res. 114, 565-571
   Abstract »    Full Text »    PDF »
{beta}-Elemene Effectively Suppresses the Growth and Survival of Both Platinum-sensitive and -resistant Ovarian Tumor Cells.
R. X. LEE, Q. Q. LI, and E. REED (2012)
Anticancer Res 32, 3103-3113
   Abstract »    Full Text »    PDF »
Loss of Cyclin-Dependent Kinase 2 (CDK2) Inhibitory Phosphorylation in a CDK2AF Knock-In Mouse Causes Misregulation of DNA Replication and Centrosome Duplication.
H. Zhao, X. Chen, M. Gurian-West, and J. M. Roberts (2012)
Mol. Cell. Biol. 32, 1421-1432
   Abstract »    Full Text »    PDF »
Linking DNA replication checkpoint to MBF cell-cycle transcription reveals a distinct class of G1/S genes.
F. M. Bastos de Oliveira, M. R. Harris, P. Brazauskas, R. A. M. de Bruin, and M. B. Smolka (2012)
EMBO J. 31, 1798-1810
   Abstract »    Full Text »    PDF »
Naturally occurring, tumor-specific, therapeutic proteins.
K. Argiris, C. Panethymitaki, and M. Tavassoli (2011)
Experimental Biology and Medicine 236, 524-536
   Abstract »    Full Text »    PDF »
Deletion of Puma protects hematopoietic stem cells and confers long-term survival in response to high-dose {gamma}-irradiation.
H. Yu, H. Shen, Y. Yuan, R. XuFeng, X. Hu, S. P. Garrison, L. Zhang, J. Yu, G. P. Zambetti, and T. Cheng (2010)
Blood 115, 3472-3480
   Abstract »    Full Text »    PDF »
Restoration of p53 Functions Protects Cells from Concanavalin A-Induced Apoptosis.
A.R.M. R. Amin, V. S. Thakur, K. Gupta, M. W. Jackson, H. Harada, M. K. Agarwal, D. M. Shin, D. N. Wald, and M. L. Agarwal (2010)
Mol. Cancer Ther. 9, 471-479
   Abstract »    Full Text »    PDF »
Perspectives for Cancer Prevention With Natural Compounds.
A.R.M. R. Amin, O. Kucuk, F. R. Khuri, and D. M. Shin (2009)
J. Clin. Oncol. 27, 2712-2725
   Abstract »    Full Text »    PDF »
In Non-neoplastic Barrett's Epithelial Cells, Acid Exerts Early Antiproliferative Effects through Activation of the Chk2 Pathway.
H.-Y. Zhang, X. Zhang, K. Hormi-Carver, L. A. Feagins, S. J. Spechler, and R. F. Souza (2007)
Cancer Res. 67, 8580-8587
   Abstract »    Full Text »    PDF »
Brn-3b enhances the pro-apoptotic effects of p53 but not its induction of cell cycle arrest by cooperating in trans-activation of bax expression.
V. S. Budhram-Mahadeo, S. Bowen, S. Lee, C. Perez-Sanchez, E. Ensor, P. J. Morris, and D. S. Latchman (2006)
Nucleic Acids Res. 34, 6640-6652
   Abstract »    Full Text »    PDF »
Base Excision Repair Intermediates Induce p53-independent Cytotoxic and Genotoxic Responses.
R. W. Sobol, M. Kartalou, K. H. Almeida, D. F. Joyce, B. P. Engelward, J. K. Horton, R. Prasad, L. D. Samson, and S. H. Wilson (2003)
J. Biol. Chem. 278, 39951-39959
   Abstract »    Full Text »    PDF »
Delineating the position of rad4+/cut5+ within the DNA-structure checkpoint pathways in Schizosaccharomyces pombe.
S. Harris, C. Kemplen, T. Caspari, C. Chan, H. D. Lindsay, M. Poitelea, A. M. Carr, and C. Price (2003)
J. Cell Sci. 116, 3519-3529
   Abstract »    Full Text »    PDF »
A subset of ATM- and ATR-dependent phosphorylation events requires the BRCA1 protein.
N. Foray, D. Marot, A. Gabriel, V. Randrianarison, A. M. Carr, M. Perricaudet, A. Ashworth, and P. Jeggo (2003)
EMBO J. 22, 2860-2871
   Abstract »    Full Text »    PDF »
p53 Transgenic Mice Are Highly Susceptible to 1, 2-Dimethylhydrazine-induced Uterine Sarcomas.
Z. Zhang, J. Li, L. E. Lantry, Y. Wang, R. W. Wiseman, R. A. Lubet, and M. You (2002)
Cancer Res. 62, 3024-3029
   Abstract »    Full Text »    PDF »
Functions of BRCA1 and BRCA2 in the biological response to DNA damage.
A. R. Venkitaraman (2001)
J. Cell Sci. 114, 3591-3598
   Abstract »    Full Text »    PDF »
Mechanism of Apoptosis and Determination of Cellular Fate in Chromium(VI)-exposed Populations of Telomerase-immortalized Human Fibroblasts.
D. E. Pritchard, S. Ceryak, L. Ha, J. L. Fornsaglio, S. K. Hartman, T. J. O'Brien, and S. R. Patierno (2001)
Cell Growth Differ. 12, 487-496
   Abstract »    Full Text »    PDF »
COP9 signalosome-specific phosphorylation targets p53 to degradation by the ubiquitin system.
D. Bech-Otschir, R. Kraft, X. Huang, P. Henklein, B. Kapelari, C. Pollmann, and W. Dubiel (2001)
EMBO J. 20, 1630-1639
   Abstract »    Full Text »    PDF »
Phosphorylation and Rapid Relocalization of 53BP1 to Nuclear Foci upon DNA Damage.
L. Anderson, C. Henderson, and Y. Adachi (2001)
Mol. Cell. Biol. 21, 1719-1729
   Abstract »    Full Text »    PDF »
Chromosome 11 allelotypes reflect a mechanism of chemical carcinogenesis in heterozygous p53-deficient mice.
J. E. Hulla, J. E. French, and J. K. Dunnick (2001)
Carcinogenesis 22, 89-98
   Abstract »    Full Text »    PDF »
Loss of heterozygosity frequency at the Trp53 locus in p53-deficient (+/-) mouse tumors is carcinogen-and tissue-dependent.
J. E. French, G. D. Lacks, C. Trempus, J. K. Dunnick, J. Foley, J. Mahler, R. R. Tice, and R. W. Tennant (2001)
Carcinogenesis 22, 99-106
   Abstract »    Full Text »    PDF »
Polymerase eta deficiency in the xeroderma pigmentosum variant uncovers an overlap between the S phase checkpoint and double-strand break repair.
C. L. Limoli, E. Giedzinski, W. F. Morgan, and J. E. Cleaver (2000)
PNAS 97, 7939-7946
   Abstract »    Full Text »    PDF »
Transcriptional Regulation of the Human DNA Polymerase delta Catalytic Subunit Gene POLD1 by p53 Tumor Suppressor and Sp1.
B. Li and M. Y. W. Lee (2001)
J. Biol. Chem. 276, 29729-29739
   Abstract »    Full Text »    PDF »
Polymerase eta deficiency in the xeroderma pigmentosum variant uncovers an overlap between the S phase checkpoint and double-strand break repair.
C. L. Limoli, E. Giedzinski, W. F. Morgan, and J. E. Cleaver (2000)
PNAS 97, 7939-7946
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882