Research ArticleNeuroscience

Phosphorylation of Ser1928 mediates the enhanced activity of the L-type Ca2+ channel Cav1.2 by the β2-adrenergic receptor in neurons

See allHide authors and affiliations

Sci. Signal.  24 Jan 2017:
Vol. 10, Issue 463, eaaf9659
DOI: 10.1126/scisignal.aaf9659

You are currently viewing the editor's summary.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

How adrenaline activates Cav1.2

The L-type Ca2+ channel Cav1.2 controls heart rate and neuronal excitability. Qian et al. found that enhancement of Cav1.2 channel activity in the brain by β-adrenergic receptor (βAR) signaling required phosphorylation of Ser1928, whereas in the heart, this site was dispensable for βAR-mediated regulation. In contrast to those from wild-type mice, hippocampal neurons from mice, in which Ser1928 of Cav1.2 was mutated to alanine, did not exhibit increased L-type calcium channel activity in response to β-adrenergic stimulation. Phosphorylation of Ser1928 involved signaling through the β2AR, but not through the β1AR, and this phosphorylation event enabled a particular form of long-term potentiation, a process linked to learning and memory. These results were in marked contrast to βAR-mediated regulation of Cav1.2 activity in cardiomyocytes, which involved β1AR and was independent of Ser1928. This differential regulation in the heart and brain implies that tissue-specific therapeutics could be identified.