Research ArticleImmunology

Blockade of surface-bound TGF-β on regulatory T cells abrogates suppression of effector T cell function in the tumor microenvironment

See allHide authors and affiliations

Sci. Signal.  29 Aug 2017:
Vol. 10, Issue 494, eaak9702
DOI: 10.1126/scisignal.aak9702

You are currently viewing the editor's summary.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Blocking immunosuppression

The antitumor effects of CD8+ T cells can be blocked in the tumor microenvironment, including through the suppressive function of regulatory T cells (Tregs). Standard in vitro systems fail to recapitulate the conditions that immune cells are exposed to in vivo. Budhu et al. used a three-dimensional, collagen-fibrin gel system to investigate the effects of CD8+ T cells on cocultured melanoma cells excised from mouse tumors. The antitumor activity of the CD8+ T cells was inhibited by the presence of tumor-derived Tregs, which depended on cell-cell contact or close proximity, required the cytokine TGF-β on the Treg cell surface, and resulted in the increased cell surface expression of the immune checkpoint receptor PD-1 on the CD8+ T cells. A blocking antibody against TGF-β prevented immunosuppression, suggesting a therapeutic strategy to inhibit Treg activity in tumors.