Research ArticleNeuroscience

Neurotransmitters Drive Combinatorial Multistate Postsynaptic Density Networks

Science Signaling  28 Apr 2009:
Vol. 2, Issue 68, pp. ra19
DOI: 10.1126/scisignal.2000102

You are currently viewing the abstract.

View Full Text

Log in


Abstract

The mammalian postsynaptic density (PSD) comprises a complex collection of ~1100 proteins. Despite extensive knowledge of individual proteins, the overall organization of the PSD is poorly understood. Here, we define maps of molecular circuitry within the PSD based on phosphorylation of postsynaptic proteins. Activation of a single neurotransmitter receptor, the N-methyl-d-aspartate receptor (NMDAR), changed the phosphorylation status of 127 proteins. Stimulation of ionotropic and metabotropic glutamate receptors and dopamine receptors activated overlapping networks with distinct combinatorial phosphorylation signatures. Using peptide array technology, we identified specific phosphorylation motifs and switching mechanisms responsible for the integration of neurotransmitter receptor pathways and their coordination of multiple substrates in these networks. These combinatorial networks confer high information-processing capacity and functional diversity on synapses, and their elucidation may provide new insights into disease mechanisms and new opportunities for drug discovery.

View Full Text