Bruton’s Tyrosine Kinase Revealed as a Negative Regulator of Wnt–β-Catenin Signaling

Sci. Signal., 26 May 2009
Vol. 2, Issue 72, p. ra25
DOI: 10.1126/scisignal.2000230

Bruton’s Tyrosine Kinase Revealed as a Negative Regulator of Wnt–β-Catenin Signaling

  1. Richard G. James1,2,*,
  2. Travis L. Biechele1,2,*,
  3. William H. Conrad1,2,
  4. Nathan D. Camp1,2,
  5. Daniel M. Fass3,,
  6. Michael B. Major1,2,
  7. Karen Sommer4,
  8. XianHua Yi5,
  9. Brian S. Roberts6,
  10. Michele A. Cleary6,
  11. William T. Arthur6,
  12. Michael MacCoss5,
  13. David J. Rawlings4,
  14. Stephen J. Haggarty3,, and
  15. Randall T. Moon1,2,
  1. 1Department of Pharmacology, Howard Hughes Medical Institute, University of Washington School of Medicine, Box 357370, Seattle, WA 98195, USA.
  2. 2Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Box 357370, Seattle, WA 98195, USA.
  3. 3The Broad Institute of Harvard University and Massachusetts Institute of Technology, 7 Cambridge Street, Cambridge, MA 02141, USA.
  4. 4Departments of Pediatrics and Immunology, Seattle Children’s Research Institute, 1900 Ninth Avenue, C9S-7, Seattle, WA 98101, USA.
  5. 5Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.
  6. 6Rosetta Inpharmatics, LLC, a wholly owned subsidiary of Merck & Co Inc., 401 Terry Avenue N, Seattle, WA 98109, USA.
  1. To whom correspondence should be addressed. E-mail: rtmoon{at}u.washington.edu
  • * These authors contributed equally to this work.

  • Present address: Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.

Abstract

Wnts are secreted ligands that activate several receptor-mediated signal transduction cascades. Homeostatic Wnt signaling through β-catenin is required in adults, because either elevation or attenuation of β-catenin function has been linked to diverse diseases. To contribute to the identification of both protein and pharmacological regulators of this pathway, we describe a combinatorial screen that merged data from a high-throughput screen of known bioactive compounds with an independent focused small interfering RNA screen. Each screen independently revealed Bruton’s tyrosine kinase (BTK) as an inhibitor of Wnt–β-catenin signaling. Loss of BTK function in human colorectal cancer cells, human B cells, zebrafish embryos, and cells derived from X-linked agammaglobulinemia patients with a mutant BTK gene resulted in elevated Wnt–β-catenin signaling, confirming that BTK acts as a negative regulator of this pathway. From affinity purification–mass spectrometry and biochemical binding studies, we found that BTK directly interacts with a nuclear component of Wnt–β-catenin signaling, CDC73. Further, we show that BTK increased the abundance of CDC73 in the absence of stimulation and that CDC73 acted as a repressor of β-catenin–mediated transcription in human colorectal cancer cells and B cells.

Citation:

R. G. James, T. L. Biechele, W. H. Conrad, N. D. Camp, D. M. Fass, M. B. Major, K. Sommer, X. Yi, B. S. Roberts, M. A. Cleary, W. T. Arthur, M. MacCoss, D. J. Rawlings, S. J. Haggarty, and R. T. Moon, Bruton’s Tyrosine Kinase Revealed as a Negative Regulator of Wnt–β-Catenin Signaling. Sci. Signal. 2, ra25 (2009).

Genome-wide identification of phospho-regulators of Wnt signaling in Drosophila
S. Swarup, T. Pradhan-Sundd, and E. M. Verheyen
Development 142, 1502-1515 (15 April 2015)

Bruton Tyrosine Kinase Is a Therapeutic Target in Stem-like Cells from Multiple Myeloma
Y. Yang, J. Shi, Z. Gu, M. E. Salama, S. Das, E. Wendlandt, H. Xu, J. Huang, Y. Tao, M. Hao et al.
Cancer Res. 75, 594-604 (1 February 2015)

Application of an integrated physical and functional screening approach to identify inhibitors of the Wnt pathway
B. W. Miller, G. Lau, C. Grouios, E. Mollica, M. Barrios-Rodiles, Y. Liu, A. Datti, Q. Morris, J. L. Wrana, L. Attisano et al.
Mol Syst Biol 5, 315-315 (28 July 2014)

Transcriptional Repression of Tumor Suppressor CDC73, Encoding an RNA Polymerase II Interactor, by Wilms Tumor 1 Protein (WT1) Promotes Cell Proliferation: IMPLICATION FOR CANCER THERAPEUTICS
M. I. Rather, S. Swamy, K. S. Gopinath, and A. Kumar
J Biol Chem 289, 968-976 (10 January 2014)

Protein Kinase PKN1 Represses Wnt/{beta}-Catenin Signaling in Human Melanoma Cells
R. G. James, K. A. Bosch, R. M. Kulikauskas, P. T. Yang, N. C. Robin, R. A. Toroni, T. L. Biechele, J. D. Berndt, P. D. von Haller, J. K. Eng et al.
J Biol Chem 288, 34658-34670 (29 November 2013)

Oncogenic MicroRNA-155 Down-regulates Tumor Suppressor CDC73 and Promotes Oral Squamous Cell Carcinoma Cell Proliferation: IMPLICATIONS FOR CANCER THERAPEUTICS
M. I. Rather, M. N. Nagashri, S. S. Swamy, K. S. Gopinath, and A. Kumar
J Biol Chem 288, 608-618 (4 January 2013)

Identification of four novel variants that influence central corneal thickness in multi-ethnic Asian populations
B. K. Cornes, C. C. Khor, M. E. Nongpiur, L. Xu, W.-T. Tay, Y. Zheng, R. Lavanya, Y. Li, R. Wu, X. Sim et al.
Hum Mol Genet 21, 437-445 (15 January 2012)

Identification of {beta}-catenin as a target of the intracellular tyrosine kinase PTK6
H. L. Palka-Hamblin, J. J. Gierut, W. Bie, P. M. Brauer, Y. Zheng, J. M. Asara, and A. L. Tyner
J. Cell Sci. 123, 236-245 (15 January 2010)

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882