Review

Plant Histidine Kinases: An Emerging Picture of Two-Component Signal Transduction in Hormone and Environmental Responses

Science's STKE  20 Nov 2001:
Vol. 2001, Issue 109, pp. re18
DOI: 10.1126/stke.2001.109.re18

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Abstract

In the Arabidopsis thaliana genome, 11 genes encode bacterial-type two-component histidine kinases. Genetic and biochemical analyses indicate that five two-component histidine kinase-like proteins (ETR1, ETR2, EIN4, ERS1, and ERS2) function as ethylene receptors. A hybrid histidine kinase, CRE1 (also known as AHK4), acts as a cytokinin receptor, and a set of response regulators may be involved in cytokinin signal transduction. In addition to CRE1, histidine kinases CKI1 and CKI2 are likely to play important roles in cytokinin signaling. A database search of the entire Arabidopsis genome sequence has identified two additional homologs of CRE1. Arabidopsis seems to employ a hybrid histidine kinase, ATHK1, as an osmosensor. Plants widely use two-component systems in the detection of, and signal transduction by, the growth regulators ethylene and cytokinin, as well as in their responses to environmental stimuli.

View Full Text