Review

FXYD Proteins: New Tissue-Specific Regulators of the Ubiquitous Na,K-ATPase

See allHide authors and affiliations

Science's STKE  21 Jan 2003:
Vol. 2003, Issue 166, pp. re1
DOI: 10.1126/stke.2003.166.re1

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Abstract

Maintenance of the Na+ and K+ gradients between the intracellular and extracellular milieus of animal cells is a prerequisite for basic cellular homeostasis and for functions of specialized tissues. The Na,K-ATPase, an oligomeric P-type adenosine triphosphatase (ATPase), is composed of a catalytic α subunit and a regulatory β subunit and is the main player that fulfils these tasks. A variety of regulatory mechanisms are necessary to guarantee appropriate Na,K-ATPase expression and activity adapted to changing physiological demands. Recently, a regulatory mechanism was defined that is mediated by interaction of Na,K-ATPase with small proteins of the FXYD family, which possess a single transmembrane domain and so far have been considered as channels or regulators of ion channels. The mammalian FXYD proteins FXYD1 through FXYD7 exhibit tissue-specific distribution. Phospholemman (FXYD1) in heart and skeletal muscle, the γ subunit of Na,K-ATPase (FXYD2) and corticosteroid hormone-induced factor (FXYD4, also known as CHIF) in the kidney, and FXYD7 in the brain associate preferentially with the widely expressed Na,K-ATPase α1-β1 isozyme and modulate its transport activity in a way that conforms to tissue-specific requirements. Thus, tissue- and isozyme-specific interaction of Na,K-ATPase with FXYD proteins contributes to proper handling of Na+ and K+ by the Na,K-ATPase, and ensures correct function in such processes as renal Na+-reabsorption, muscle contraction, and neuronal excitability.

View Full Text