The Emergence of Pattern in Embryogenesis: Regulation of β-Catenin Localization During Early Sea Urchin Development

Science's STKE  14 Nov 2006:
Vol. 2006, Issue 361, pp. pe48
DOI: 10.1126/stke.3612006pe48

You are currently viewing the abstract.

View Full Text


The accumulation of β-catenin in the nuclei of blastomeres at one pole of the early embryo is a highly conserved and essential feature of animal development. In the sea urchin, β-catenin accumulates in the nuclei of vegetal blastomeres during early cleavage and activates gene regulatory networks that drive mesoderm and endoderm formation. Measurements of β-catenin half-life in vivo have demonstrated a gradient in stability along the animal-vegetal axis. Dishevelled (Dsh), a protein that regulates β-catenin turnover, is localized in the vegetal cortex, where it has an essential role in stabilizing β-catenin and activating endomesodermal gene networks. Two motifs of Dsh are required for targeting to the vegetal cortex. Overexpression of Dsh in animal blastomeres does not alter their fate, which suggests that a localized activator of Dsh may be missing in these cells. Wnt signaling may be localized in the early sea urchin embryo, as it is in Xenopus, but findings point to possible differences in the initial polarizing signal in amphibians and echinoderms. Further studies will be required to determine the extent to which mechanisms that control β-catenin nuclearization in early embryogenesis have been conserved during animal evolution.

View Full Text