ProtocolBiochemistry

Identification of Redox-Active Cell-Surface Proteins by Mechanism-Based Kinetic Trapping

Science's STKE  18 Dec 2007:
Vol. 2007, Issue 417, pp. pl8
DOI: 10.1126/stke.4172007pl8

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Abstract

A number of thiol-dependent oxidoreductases are released from cells and act on the cell surface. Correspondingly, several cell-surface processes appear to depend on catalyzed thiol-disulfide exchange, including integrin activation and the fusion of viral particles with the host membrane. Tumor cells frequently increase the abundance of secreted and cell-surface forms of particular oxidoreductases, and evidence suggests that oxidoreductases released from tumor cells promote growth and contribute to the remodeling of the cellular microenvironment. Few cell-surface or membrane proteins that are targeted by extracellular redox enzymes have been identified. One major reason for this slow progress is the highly transient nature of thiol-disulfide exchange, making its detection by conventional techniques difficult or impossible. Here we describe the application of an activity-based proteomics approach, also known as "mechanism-based kinetic trapping," to identify individual cell-surface target proteins that engage in disulfide exchange with thiol-dependent oxidoreductases. Although we have applied this approach to thioredoxin-1, it should also be applicable to other members of the thioredoxin superfamily whose activity is based on the CXXC active-site motif.

View Full Text