Inferring Signaling Pathway Topologies from Multiple Perturbation Measurements of Specific Biochemical Species

Science Signaling  16 Mar 2010:
Vol. 3, Issue 113, pp. ra20
DOI: 10.1126/scisignal.2000517

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

This article has a correction. Please see:


The specification of biological decisions by signaling pathways is encoded by the interplay between activation dynamics and network topologies. Although we can describe complex networks, we cannot easily determine which topology the cell actually uses to transduce a specific signal. Experimental testing of all plausible topologies is infeasible because of the combinatorially large number of experiments required to explore the complete hypothesis space. Here, we demonstrate that Bayesian inference–based modeling provides an approach to explore and constrain this hypothesis space, permitting the rational ranking of pathway models. Our approach can use measurements of a limited number of biochemical species when combined with multiple perturbations. As proof of concept, we examined the activation of the extracellular signal–regulated kinase (ERK) pathway by epidermal growth factor. The predicted and experimentally validated model shows that both Raf-1 and, unexpectedly, B-Raf are needed to fully activate ERK in two different cell lines. Thus, our formal methodology rationally infers evidentially supported pathway topologies even when a limited number of biochemical and kinetic measurements are available.

View Full Text

Cited By...