Origins and Diversification of a Complex Signal Transduction System in Prokaryotes

Sci. Signal., 29 June 2010
Vol. 3, Issue 128, p. ra50
DOI: 10.1126/scisignal.2000724

Origins and Diversification of a Complex Signal Transduction System in Prokaryotes

  1. Kristin Wuichet1,2 and
  2. Igor B. Zhulin1,2,*
  1. 1BioEnergy Science Center and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
  2. 2Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
  1. *To whom correspondence should be addressed. E-mail: ijouline{at}utk.edu

Abstract

The molecular machinery that controls chemotaxis in bacteria is substantially more complex than any other signal transduction system in prokaryotes, and its origins and variability among living species are unknown. We found that this multiprotein “chemotaxis system” is present in most prokaryotic species and evolved from simpler two-component regulatory systems that control prokaryotic transcription. We discovered, through genomic analysis, signaling systems intermediate between two-component systems and chemotaxis systems. Evolutionary genomics established central and auxiliary components of the chemotaxis system. While tracing its evolutionary history, we also developed a classification scheme that revealed more than a dozen distinct classes of chemotaxis systems, enabling future predictive modeling of chemotactic behavior in unstudied species.

Citation:

K. Wuichet and I. B. Zhulin, Origins and Diversification of a Complex Signal Transduction System in Prokaryotes. Sci. Signal. 3, ra50 (2010).

Pseudomonas chemotaxis
I. Sampedro, R. E. Parales, T. Krell, and J. E. Hill
FEMS Microbiol Rev 39, 17-46 (1 January 2015)

Chemosensory Regulation of a HEAT-Repeat Protein Couples Aggregation and Sporulation in Myxococcus xanthus
C. L. Darnell, J. M. Wilson, N. Tiwari, E. J. Fuentes, and J. R. Kirby
J. Bacteriol. 196, 3160-3168 (1 September 2014)

Specificity of the CheR2 Methyltransferase in Pseudomonas aeruginosa Is Directed by a C-Terminal Pentapeptide in the McpB Chemoreceptor
C. Garcia-Fontana, A. Corral Lugo, and T. Krell
Sci Signal 7, ra34-ra34 (8 April 2014)

Structure of bacterial cytoplasmic chemoreceptor arrays and implications for chemotactic signaling
A. Briegel, M. S. Ladinsky, C. Oikonomou, C. W. Jones, M. J. Harris, D. J. Fowler, Y.-W. Chang, L. K. Thompson, J. P. Armitage, G. J. Jensen et al.
elife 3, e02151-e02151 (1 January 2014)

Chemoreceptor Gene Loss and Acquisition via Horizontal Gene Transfer in Escherichia coli
K. Borziak, A. D. Fleetwood, and I. B. Zhulin
J. Bacteriol. 195, 3596-3602 (15 August 2013)

High Specificity in CheR Methyltransferase Function: CheR2 OF PSEUDOMONAS PUTIDA IS ESSENTIAL FOR CHEMOTAXIS, WHEREAS CheR1 IS INVOLVED IN BIOFILM FORMATION
C. Garcia-Fontana, J. A. Reyes-Darias, F. Munoz-Martinez, C. Alfonso, B. Morel, J. L. Ramos, and T. Krell
J Biol Chem 288, 18987-18999 (28 June 2013)

Structure and Activity of the Flagellar Rotor Protein FliY: A MEMBER OF THE CheC PHOSPHATASE FAMILY
R. Sircar, A. R. Greenswag, A. M. Bilwes, G. Gonzalez-Bonet, and B. R. Crane
J Biol Chem 288, 13493-13502 (10 May 2013)

A Single-Cell Genome for Thiovulum sp.
I. P. G. Marshall, P. C. Blainey, A. M. Spormann, and S. R. Quake
Appl. Environ. Microbiol. 78, 8555-8563 (15 December 2012)

A chemoreceptor from Pseudomonas putida forms active signalling complexes in Escherichia coli
M. K. Herrera Seitz, D. Soto, and C. A. Studdert
Microbiology 158, 2283-2292 (1 September 2012)

Intra- and Interprotein Phosphorylation between Two-hybrid Histidine Kinases Controls Myxococcus xanthus Developmental Progression
A. Schramm, B. Lee, and P. I. Higgs
J Biol Chem 287, 25060-25072 (20 July 2012)

In Rhodobacter sphaeroides, Chemotactic Operon 1 Regulates Rotation of the Flagellar System 2
A. Martinez-del Campo, T. Ballado, L. Camarena, and G. Dreyfus
J. Bacteriol. 193, 6781-6786 (1 December 2011)

Mutational Analysis of the Control Cable That Mediates Transmembrane Signaling in the Escherichia coli Serine Chemoreceptor
S. Kitanovic, P. Ames, and J. S. Parkinson
J. Bacteriol. 193, 5062-5072 (1 October 2011)

CrdS and CrdA Comprise a Two-Component System That Is Cooperatively Regulated by the Che3 Chemosensory System in Myxococcus xanthus
J. W. Willett, and J. R. Kirby
mBio 2, e00110-11-e00110-11 (1 September 2011)

ChePep Controls Helicobacter pylori Infection of the Gastric Glands and Chemotaxis in the Epsilonproteobacteria
M. R. Howitt, J. Y. Lee, P. Lertsethtakarn, R. Vogelmann, L.-M. Joubert, K. M. Ottemann, and M. R. Amieva
mBio 2, e00098-11-e00098-11 (1 September 2011)

CheY3 of Borrelia burgdorferi Is the Key Response Regulator Essential for Chemotaxis and Forms a Long-Lived Phosphorylated Intermediate
M. A. Motaleb, S. Z. Sultan, M. R. Miller, C. Li, and N. W. Charon
J. Bacteriol. 193, 3332-3341 (1 July 2011)

The Promise of Evolutionary Systems Biology: Lessons from Bacterial Chemotaxis
O. S. Soyer, S. Z. Sultan, M. R. Miller, C. Li, and N. W. Charon
Sci Signal 3, pe23-pe23 (29 June 2010)

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882