ABL Tyrosine Kinases: Evolution of Function, Regulation, and Specificity

This article has a correction Sci. Signal. 4(188):er4

Sci. Signal., 14 September 2010
Vol. 3, Issue 139, p. re6
DOI: 10.1126/scisignal.3139re6

ABL Tyrosine Kinases: Evolution of Function, Regulation, and Specificity

  1. John Colicelli*
  1. Department of Biological Chemistry, Molecular Biology Institute and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
  1. *Corresponding author. Telephone, 310-825-1251; fax, 310-206-1929; e-mail, colicelli{at}mednet.ucla.edu

Abstract

ABL-family proteins comprise one of the best conserved branches of the tyrosine kinases. Each ABL protein contains an SH3-SH2-TK (Src homology 3–Src homology 2–tyrosine kinase) domain cassette, which confers autoregulated kinase activity and is common among nonreceptor tyrosine kinases. This cassette is coupled to an actin-binding and -bundling domain, which makes ABL proteins capable of connecting phosphoregulation with actin-filament reorganization. Two vertebrate paralogs, ABL1 and ABL2, have evolved to perform specialized functions. ABL1 includes nuclear localization signals and a DNA binding domain through which it mediates DNA damage-repair functions, whereas ABL2 has additional binding capacity for actin and for microtubules to enhance its cytoskeletal remodeling functions. Several types of posttranslational modifications control ABL catalytic activity, subcellular localization, and stability, with consequences for both cytoplasmic and nuclear ABL functions. Binding partners provide additional regulation of ABL catalytic activity, substrate specificity, and downstream signaling. Information on ABL regulatory mechanisms is being mined to provide new therapeutic strategies against hematopoietic malignancies caused by BCR-ABL1 and related leukemogenic proteins.

Citation:

J. Colicelli, ABL Tyrosine Kinases: Evolution of Function, Regulation, and Specificity. Sci. Signal. 3, re6 (2010).

Targeting Abl Kinases to Regulate Vascular Leak During Sepsis and Acute Respiratory Distress Syndrome
A. N. Rizzo, J. Aman, G. P. van Nieuw Amerongen, and S. M. Dudek
Arterioscler. Thromb. Vasc. Bio. 35, 1071-1079 (1 May 2015)

The Interaction of Protein-tyrosine Phosphatase {alpha} (PTP{alpha}) and RACK1 Protein Enables Insulin-like Growth Factor 1 (IGF-1)-stimulated Abl-dependent and -independent Tyrosine Phosphorylation of PTP{alpha}
R. S. Khanna, H. T. Le, J. Wang, T. C. H. Fung, and C. J. Pallen
J Biol Chem 290, 9886-9895 (10 April 2015)

Promotion of Colorectal Cancer Invasion and Metastasis through Activation of NOTCH-DAB1-ABL-RHOGEF Protein TRIO
M. Sonoshita, Y. Itatani, F. Kakizaki, K. Sakimura, T. Terashima, Y. Katsuyama, Y. Sakai, and M. M. Taketo
Cancer Discovery 5, 198-211 (1 February 2015)

Differential and opposing effects of imatinib on LPS- and ventilator-induced lung injury
E. Letsiou, A. N. Rizzo, S. Sammani, P. Naureckas, J. R. Jacobson, J. G. N. Garcia, and S. M. Dudek
Am. J. Physiol. Lung Cell. Mol. Physiol. 308, L259-L269 (1 February 2015)

The Development and Application of a Quantitative Peptide Microarray Based Approach to Protein Interaction Domain Specificity Space
B. W. Engelmann, Y. Kim, M. Wang, B. Peters, R. S. Rock, and P. D. Nash
MCP 13, 3647-3662 (1 December 2014)

c-Abl Modulates Tumor Cell Sensitivity to Antibody-Dependent Cellular Cytotoxicity
J. C. Murray, D. Aldeghaither, S. Wang, R. E. Nasto, S. A. Jablonski, Y. Tang, and L. M. Weiner
Cancer Immunol Res 2, 1186-1198 (1 December 2014)

Systematic identification of Class I HDAC substrates
T. Li, B. Song, Z. Wu, M. Lu, and W.-G. Zhu
Brief Bioinform 15, 963-972 (1 November 2014)

A therapeutically targetable mechanism of BCR-ABL-independent imatinib resistance in chronic myeloid leukemia
L. Ma, Y. Shan, R. Bai, L. Xue, C. A. Eide, J. Ou, L. J. Zhu, L. Hutchinson, J. Cerny, H. J. Khoury et al.
Sci Transl Med 6, 252ra121-252ra121 (3 September 2014)

Imatinib inhibits VEGF-independent angiogenesis by targeting neuropilin 1-dependent ABL1 activation in endothelial cells
C. Raimondi, A. Fantin, A. Lampropoulou, L. Denti, A. Chikh, and C. Ruhrberg
JEM 211, 1167-1183 (2 June 2014)

c-Abl phosphorylates {alpha}-synuclein and regulates its degradation: implication for {alpha}-synuclein clearance and contribution to the pathogenesis of Parkinson's disease
A.-L. Mahul-Mellier, B. Fauvet, A. Gysbers, I. Dikiy, A. Oueslati, S. Georgeon, A. J. Lamontanara, A. Bisquertt, D. Eliezer, E. Masliah et al.
Hum Mol Genet 23, 2858-2879 (1 June 2014)

Nonenzymatic domains of Kalirin7 contribute to spine morphogenesis through interactions with phosphoinositides and Abl
X.-M. Ma, M. B. Miller, K. S. Vishwanatha, M. J. Gross, Y. Wang, T. Abbott, T. T. Lam, R. E. Mains, and B. A. Eipper
Mol. Biol. Cell 25, 1458-1471 (1 May 2014)

The Capable ABL: What Is Its Biological Function?
J. Y. J. Wang, M. B. Miller, K. S. Vishwanatha, M. J. Gross, Y. Wang, T. Abbott, T. T. Lam, R. E. Mains, and B. A. Eipper
Mol. Cell. Biol. 34, 1188-1197 (1 April 2014)

Protein kinase G increases antioxidant function in lung microvascular endothelial cells by inhibiting the c-Abl tyrosine kinase
R. S. Stephens, L. E. Servinsky, O. Rentsendorj, T. M. Kolb, A. Pfeifer, and D. B. Pearse
Am. J. Physiol. Cell Physiol. 306, C559-C569 (15 March 2014)

Two-state dynamics of the SH3-SH2 tandem of Abl kinase and the allosteric role of the N-cap
C. Corbi-Verge, F. Marinelli, A. Zafra-Ruano, J. Ruiz-Sanz, I. Luque, and J. D. Faraldo-Gomez
Proc. Natl. Acad. Sci. USA 110, E3372-E3380 (3 September 2013)

c-Abl-dependent Molecular Circuitry Involving Smad5 and Phosphatidylinositol 3-Kinase Regulates Bone Morphogenetic Protein-2-induced Osteogenesis
N. Ghosh-Choudhury, C. C. Mandal, F. Das, S. Ganapathy, S. Ahuja, and G. Ghosh Choudhury
J Biol Chem 288, 24503-24517 (23 August 2013)

Non-receptor-tyrosine Kinases Integrate Fast Glucocorticoid Signaling in Hippocampal Neurons
S. Yang, F. Roselli, A. V. Patchev, S. Yu, and O. F. X. Almeida
J Biol Chem 288, 23725-23739 (16 August 2013)

Abelson Interactor 1 (Abi1) and Its Interaction with Wiskott-Aldrich Syndrome Protein (Wasp) Are Critical for Proper Eye Formation in Xenopus Embryos
A. Singh, E. F. Winterbottom, Y. J. Ji, Y.-S. Hwang, and I. O. Daar
J Biol Chem 288, 14135-14146 (17 May 2013)

Phosphotyrosine Signaling Proteins that Drive Oncogenesis Tend to be Highly Interconnected
G. Koytiger, A. Kaushansky, A. Gordus, J. Rush, P. K. Sorger, and G. MacBeath
MCP 12, 1204-1213 (1 May 2013)

Structure and Dynamic Regulation of Abl Kinases
S. Panjarian, R. E. Iacob, S. Chen, J. R. Engen, and T. E. Smithgall
J Biol Chem 288, 5443-5450 (22 February 2013)

RIN1 orchestrates the activation of RAB5 GTPases and ABL tyrosine kinases to determine the fate of EGFR
K. Balaji, C. Mooser, C. M. Janson, J. M. Bliss, H. Hojjat, and J. Colicelli
J. Cell Sci. 125, 5887-5896 (1 December 2012)

Angiotensin-II and MARCKS: A HYDROGEN PEROXIDE- AND RAC1-DEPENDENT SIGNALING PATHWAY IN VASCULAR ENDOTHELIUM
H. Kalwa, J. L. Sartoretto, S. M. Sartoretto, and T. Michel
J Biol Chem 287, 29147-29158 (17 August 2012)

Abl Family Kinases Modulate T Cell-Mediated Inflammation and Chemokine-Induced Migration Through the Adaptor HEF1 and the GTPase Rap1
J. J. Gu, C. P. Lavau, E. Pugacheva, E. J. Soderblom, M. A. Moseley, and A. M. Pendergast
Sci Signal 5, ra51-ra51 (17 July 2012)

Caveolar domain organization and trafficking is regulated by Abl kinases and mDia1
A. Echarri, O. Muriel, D. M. Pavon, H. Azegrouz, F. Escolar, M. C. Terron, F. Sanchez-Cabo, F. Martinez, M. C. Montoya, O. Llorca et al.
J. Cell Sci. 125, 3097-3113 (1 July 2012)

Activation of Abl Family Kinases in Solid Tumors
S. S. Ganguly, and R. Plattner
Genes & Cancer 3, 414-425 (1 May 2012)

Proteome-wide Detection of Abl1 SH3-binding Peptides by Integrating Computational Prediction and Peptide Microarray
Z. Xu, T. Hou, N. Li, Y. Xu, and W. Wang
MCP 11, O111.010389-O111.010389 (1 January 2012)

Characterization of the Src/Abl Hybrid Kinase SmTK6 of Schistosoma mansoni
S. Beckmann, S. Hahnel, K. Cailliau, M. Vanderstraete, E. Browaeys, C. Dissous, and C. G. Grevelding
J Biol Chem 286, 42325-42336 (9 December 2011)

The SH2 Domain-Containing Proteins in 21 Species Establish the Provenance and Scope of Phosphotyrosine Signaling in Eukaryotes
B. A. Liu, E. Shah, K. Jablonowski, A. Stergachis, B. Engelmann, and P. D. Nash
Sci Signal 4, ra83-ra83 (6 December 2011)

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882