Research ArticleOlfaction

Activation State of the M3 Muscarinic Acetylcholine Receptor Modulates Mammalian Odorant Receptor Signaling

See allHide authors and affiliations

Sci. Signal.  11 Jan 2011:
Vol. 4, Issue 155, pp. ra1
DOI: 10.1126/scisignal.2001230

You are currently viewing the abstract.

View Full Text


A diverse repertoire of heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptors (GPCRs) enables cells to sense their environment. Mammalian olfaction requires the activation of odorant receptors (ORs), the largest family of GPCRs; however, whether ORs functionally interact with other families of GPCRs is unclear. We show that the interaction of ORs with the type 3 muscarinic acetylcholine receptor (M3-R), which is found in olfactory sensory neurons (OSNs), modulated OR responses to cognate odorants. In human embryonic kidney–293T cells, ORs and the M3-R physically interacted, and the M3-R increased the potency and efficacy of odorant-elicited responses of several ORs. Selective M3-R antagonists attenuated odorant-dependent activation of OSNs, and, when the M3-R and ORs were expressed in transfected cells, OR activation was enhanced by muscarinic agonists and inhibited by muscarinic antagonists. Furthermore, M3-R–dependent potentiation of OR signaling synergized with that of receptor transporting protein 1S (RTP1S), an accessory factor required for the efficient membrane targeting of ORs. However, the M3-R did not enhance the abundance of ORs at the cell surface, suggesting that the M3-R acted through a distinct mechanism independent of RTP1S. Finally, the activation of ORs by cognate odorants transactivated the M3-R in the absence of its agonist. The crosstalk between ORs and the M3-R suggests that the functional coupling of ORs and the M3-R is required for robust OR activation.

View Full Text