Research ArticleCancer

Global Phosphoproteomics Reveals Crosstalk Between Bcr-Abl and Negative Feedback Mechanisms Controlling Src Signaling

Sci. Signal.  29 Mar 2011:
Vol. 4, Issue 166, pp. ra18
DOI: 10.1126/scisignal.2001314

You are currently viewing the abstract.

View Full Text

Log in


Abstract

In subtypes and late stages of leukemias driven by the tyrosine kinase fusion protein Bcr-Abl, signaling by the Src family kinases (SFKs) critically contributes to the leukemic phenotype. We performed global tyrosine phosphoprofiling by quantitative mass spectrometry of Bcr-Abl–transformed cells in which the activities of the SFKs were perturbed to build a detailed context-dependent network of cancer signaling. Perturbation of the SFKs Lyn and Hck with genetics or inhibitors revealed Bcr-Abl downstream phosphorylation events either mediated by or independent of SFKs. We identified multiple negative feedback mechanisms within the network of signaling events affected by Bcr-Abl and SFKs and found that Bcr-Abl attenuated these inhibitory mechanisms. The C-terminal Src kinase (Csk)–binding protein Pag1 (also known as Cbp) and the tyrosine phosphatase Ptpn18 both mediated negative feedback to SFKs. We observed Bcr-Abl–mediated phosphorylation of the phosphatase Shp2 (Ptpn11), and this may contribute to the suppression of these negative feedback mechanisms to promote Bcr-Abl–activated SFK signaling. Csk and a kinase-deficient Csk mutant both produced similar globally repressive signaling consequences, suggesting a critical role for the adaptor protein function of Csk in its inhibition of Bcr-Abl and SFK signaling. The identified Bcr-Abl–activated SFK regulatory mechanisms are candidates for dysregulation during leukemia progression and acquisition of SFK-mediated drug resistance.

View Full Text