PerspectiveRedox Signaling

All Stressed Out Without ATM Kinase

See allHide authors and affiliations

Sci. Signal.  05 Apr 2011:
Vol. 4, Issue 167, pp. pe18
DOI: 10.1126/scisignal.2001961

You are currently viewing the abstract.

View Full Text


Ataxia-telangiectasia (A-T) is a rare, neurodegenerative, inherited disease arising from mutations in the kinase A-T mutated (ATM), which promotes cell cycle checkpoints and DNA double-strand break repair. Puzzlingly, these ATM activities fail to fully explain A-T neuropathologies, which instead have links to stress induced by reactive oxygen species (ROS). However, a landmark discovery reveals an unexpected intersection of ROS and kinase signaling: ATM can be directly activated by oxidation to form a disulfide-linked dimer in a mechanism distinct from DNA damage activation. When combined with notable structural-based insights into the ATM homolog DNA-PK (DNA-protein kinase) and mTOR (mammalian target of rapamycin), these results suggest conformation and assembly mechanisms to signal oxidative stress through an ATM nodal point. These findings fundamentally affect our understanding of ROS and ATM signaling and of the A-T phenotype, with implications for altering signaling in cancer cells to increase sensitivities to current therapeutic interventions.

View Full Text