Research ArticleImmunology

Human Regulatory T Cells Rapidly Suppress T Cell Receptor–Induced Ca2+, NF-κB, and NFAT Signaling in Conventional T Cells

Sci. Signal.  20 Dec 2011:
Vol. 4, Issue 204, pp. ra90
DOI: 10.1126/scisignal.2002179

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.


CD4+CD25hiFoxp3+ regulatory T cells (Tregs) are critical mediators of self-tolerance, which is crucial for the prevention of autoimmune disease, but Tregs can also inhibit antitumor immunity. Tregs inhibit the proliferation of CD4+CD25 conventional T cells (Tcons), as well as the ability of these cells to produce effector cytokines; however, the molecular mechanism of suppression remains unclear. Here, we showed that human Tregs rapidly suppressed the release of calcium ions (Ca2+) from intracellular stores in response to T cell receptor (TCR) activation in Tcons. The inhibition of Ca2+ signaling resulted in decreased dephosphorylation, and thus decreased activation, of the transcription factor nuclear factor of activated T cells 1 (NFAT1) and reduced the activation of nuclear factor κB (NF-κB). In contrast, Ca2+-independent events in Tcons, such as TCR-proximal signaling and activation of the transcription factor activator protein 1 (AP-1), were not affected during coculture with Tregs. Despite suppressing intracellular Ca2+ mobilization, coculture with Tregs did not block the generation of inositol 1,4,5-trisphosphate in TCR-stimulated Tcons. The Treg-induced suppression of the activity of NFAT and NF-κB and of the expression of the gene encoding the cytokine interleukin-2 was reversed in Tcons by increasing the concentration of intracellular Ca2+. Our results elucidate a previously unrecognized and rapid mechanism of Treg-mediated suppression. This increased understanding of Treg function may be exploited to generate possible therapies for the treatment of autoimmune diseases and cancer.

View Full Text