Research ArticleCell Biology

Cellular Inhibitors of Apoptosis Are Global Regulators of NF-κB and MAPK Activation by Members of the TNF Family of Receptors

See allHide authors and affiliations

Sci. Signal.  20 Mar 2012:
Vol. 5, Issue 216, pp. ra22
DOI: 10.1126/scisignal.2001878

You are currently viewing the abstract.

View Full Text


Tumor necrosis factor (TNF) family members are essential for the development and proper functioning of the immune system. TNF receptor (TNFR) signaling is mediated through the assembly of protein signaling complexes that activate the nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways in a ubiquitin-dependent manner. The cellular inhibitor of apoptosis (c-IAP) proteins c-IAP1 and c-IAP2 are E3 ubiquitin ligases that are recruited to TNFR signaling complexes through their constitutive association with the adaptor protein TNFR-associated factor 2 (TRAF2). We demonstrated that c-IAP1 and c-IAP2 were required for canonical activation of NF-κB and MAPK by members of the TNFR family. c-IAPs were required for the recruitment of inhibitor of κB kinase β (IKKβ), the IKK regulatory subunit NF-κB essential modulator (NEMO), and RBCK1/Hoil1-interacting protein (HOIP) to TNFR signaling complexes and the induction of gene expression by TNF family members. In contrast, TNFRs that stimulated the noncanonical NF-κB pathway triggered translocation of c-IAPs, TRAF2, and TRAF3 from the cytosol to membrane fractions, which led to their proteasomal and lysosomal degradation. Finally, we established that signaling by B cell–activating factor receptor 3 induced the cytosolic depletion of TRAF3, which enabled noncanonical NF-κB activation. These results define c-IAP proteins as critical regulators of the activation of NF-κB and MAPK signaling pathways by members of the TNFR superfamily.

View Full Text