Research ArticleStem Cells

Matrix Rigidity Controls Endothelial Differentiation and Morphogenesis of Cardiac Precursors

Science Signaling  05 Jun 2012:
Vol. 5, Issue 227, pp. ra41
DOI: 10.1126/scisignal.2003002

You are currently viewing the abstract.

View Full Text

Log in


Abstract

Tissue development and regeneration involve tightly coordinated and integrated processes: selective proliferation of resident stem and precursor cells, differentiation into target somatic cell type, and spatial morphological organization. The role of the mechanical environment in the coordination of these processes is poorly understood. We show that multipotent cells derived from native cardiac tissue continually monitored cell substratum rigidity and showed enhanced proliferation, endothelial differentiation, and morphogenesis when the cell substratum rigidity closely matched that of myocardium. Mechanoregulation of these diverse processes required p190RhoGAP, a guanosine triphosphatase–activating protein for RhoA, acting through RhoA-dependent and -independent mechanisms. Natural or induced decreases in the abundance of p190RhoGAP triggered a series of developmental events by coupling cell-cell and cell-substratum interactions to genetic circuits controlling differentiation.

View Full Text