Research ArticleImmunology

MeCP2 Reinforces STAT3 Signaling and the Generation of Effector CD4+ T Cells by Promoting miR-124–Mediated Suppression of SOCS5

See allHide authors and affiliations

Sci. Signal.  11 Mar 2014:
Vol. 7, Issue 316, pp. ra25
DOI: 10.1126/scisignal.2004824

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Abstract

Methyl CpG binding protein 2 (MeCP2) is an X-linked, multifunctional epigenetic regulator that is best known for its role in the neurological disorder Rett syndrome; however, it is also linked to multiple autoimmune disorders. We examined a potential role for MeCP2 in regulating the responses of CD4+ T cells to stimulation with antigen. MeCP2 was indispensable for the differentiation of naïve CD4+ T cells into T helper type 1 (TH1) and TH17 cells and for TH1- or TH17-mediated pathologies in vitro and in vivo. Loss of MeCP2 in CD4+ T cells impaired the expression of the microRNA (miR) miR-124 and consequently relieved miR-124–mediated repression of the translation of suppressor of cytokine signaling 5 (Socs5) mRNA. The resulting accumulation of SOCS5 inhibited the cytokine-dependent activation of signal transducer and activator of transcription 1 (STAT1) and STAT3, which are necessary for the differentiation of TH1 and TH17 cells, respectively. Upon silencing of MeCP2, primary neurons and astrocytes also failed to respond properly to STAT3-dependent signaling stimulated by neurotrophic factors. Together, these findings suggest that the regulation of STAT3 signaling may represent a common etiology underpinning the roles of MeCP2 in both the nervous and immune systems.

View Full Text