Research ArticleImmunology

Calmodulin and PI(3,4,5)P3 cooperatively bind to the Itk pleckstrin homology domain to promote efficient calcium signaling and IL-17A production

Sci. Signal.  05 Aug 2014:
Vol. 7, Issue 337, pp. ra74
DOI: 10.1126/scisignal.2005147

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Abstract

Precise regulation of the kinetics and magnitude of Ca2+ signaling enables this signal to mediate diverse responses, such as cell migration, differentiation, vesicular trafficking, and cell death. We showed that the Ca2+-binding protein calmodulin (CaM) acted in a positive feedback loop to potentiate Ca2+ signaling downstream of the Tec kinase family member Itk. Using NMR (nuclear magnetic resonance), we mapped CaM binding to two loops adjacent to the lipid-binding pocket within the Itk pleckstrin homology (PH) domain. The Itk PH domain bound synergistically to Ca2+/CaM and the lipid phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3], such that binding to Ca2+/CaM enhanced the binding to PI(3,4,5)P3 and vice versa. Disruption of CaM binding attenuated Itk recruitment to the membrane and diminished release of Ca2+ from the endoplasmic reticulum. Moreover, disruption of this feedback loop abrogated Itk-dependent production of the proinflammatory cytokine IL-17A (interleukin-17A) by CD4+ T cells. Additionally, we found that CaM associated with PH domains from other proteins, indicating that CaM may regulate other PH domain–containing proteins.

View Full Text

Related Content