Research ArticleImmunology

Inhibition of the kinase ITK in a mouse model of asthma reduces cell death and fails to inhibit the inflammatory response

Sci. Signal.  01 Dec 2015:
Vol. 8, Issue 405, pp. ra122
DOI: 10.1126/scisignal.aab0949

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Targeting ITK in asthma

CD4+ T helper 2 (TH2) lymphocytes secrete the cytokines interleukin-4 (IL-4), IL-15, and IL-13, which are implicated in the pathogenesis of asthma. Antigen stimulation of T cells activates the kinase ITK, which is required for TH2-type cytokine production. ITK knockout mice are resistant to airway inflammation, which suggests that ITK inhibitors might be used to treat human asthma. However, Sun et al. found that a mouse model of asthma developed worse disease when treated with an ITK-specific inhibitor, exhibiting increased numbers of T cells and amounts of TH2-type cytokines in the airways. These effects were associated with a failure of ITK-inhibited T cells to undergo antigen-stimulated cell death. Together, these data suggest that targeting the kinase activity of ITK in human asthma may exacerbate disease.

Abstract

Interleukin-2 (IL-2)–inducible T cell kinase (ITK) mediates T cell receptor (TCR) signaling primarily to stimulate the production of cytokines, such as IL-4, IL-5, and IL-13, from T helper 2 (TH2) cells. Compared to wild-type mice, ITK knockout mice are resistant to asthma and exhibit reduced lung inflammation and decreased amounts of TH2-type cytokines in the bronchoalveolar lavage fluid. We found that a small-molecule selective inhibitor of ITK blocked TCR-mediated signaling in cultured TH2 cells, including the tyrosine phosphorylation of phospholipase C–γ1 (PLC-γ1) and the secretion of IL-2 and TH2-type cytokines. Unexpectedly, inhibition of the kinase activity of ITK during or after antigen rechallenge in an ovalbumin-induced mouse model of asthma failed to reduce airway hyperresponsiveness and inflammation. Rather, in mice, pharmacological inhibition of ITK resulted in T cell hyperplasia and the increased production of TH2-type cytokines. Thus, our studies predict that inhibition of the kinase activity of ITK may not be therapeutic in patients with asthma.

View Full Text

Related Content