Research ArticleImmunology

Inhibition of the kinase ITK in a mouse model of asthma reduces cell death and fails to inhibit the inflammatory response

See allHide authors and affiliations

Sci. Signal.  01 Dec 2015:
Vol. 8, Issue 405, pp. ra122
DOI: 10.1126/scisignal.aab0949

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Targeting ITK in asthma

CD4+ T helper 2 (TH2) lymphocytes secrete the cytokines interleukin-4 (IL-4), IL-15, and IL-13, which are implicated in the pathogenesis of asthma. Antigen stimulation of T cells activates the kinase ITK, which is required for TH2-type cytokine production. ITK knockout mice are resistant to airway inflammation, which suggests that ITK inhibitors might be used to treat human asthma. However, Sun et al. found that a mouse model of asthma developed worse disease when treated with an ITK-specific inhibitor, exhibiting increased numbers of T cells and amounts of TH2-type cytokines in the airways. These effects were associated with a failure of ITK-inhibited T cells to undergo antigen-stimulated cell death. Together, these data suggest that targeting the kinase activity of ITK in human asthma may exacerbate disease.

Abstract

Interleukin-2 (IL-2)–inducible T cell kinase (ITK) mediates T cell receptor (TCR) signaling primarily to stimulate the production of cytokines, such as IL-4, IL-5, and IL-13, from T helper 2 (TH2) cells. Compared to wild-type mice, ITK knockout mice are resistant to asthma and exhibit reduced lung inflammation and decreased amounts of TH2-type cytokines in the bronchoalveolar lavage fluid. We found that a small-molecule selective inhibitor of ITK blocked TCR-mediated signaling in cultured TH2 cells, including the tyrosine phosphorylation of phospholipase C–γ1 (PLC-γ1) and the secretion of IL-2 and TH2-type cytokines. Unexpectedly, inhibition of the kinase activity of ITK during or after antigen rechallenge in an ovalbumin-induced mouse model of asthma failed to reduce airway hyperresponsiveness and inflammation. Rather, in mice, pharmacological inhibition of ITK resulted in T cell hyperplasia and the increased production of TH2-type cytokines. Thus, our studies predict that inhibition of the kinase activity of ITK may not be therapeutic in patients with asthma.

View Full Text