Editors' ChoiceRegulatory Biology

Papers of note in Science

See allHide authors and affiliations

Sci. Signal.  16 Feb 2016:
Vol. 9, Issue 415, pp. ec35
DOI: 10.1126/scisignal.aaf4560


Controlling supplies for DNA and RNA synthesis

Coupling cellular growth signals to synthesis of RNA and DNA.

I. Ben-Sahra, G. Hoxhaj, S. J. H. Ricoult, J. M. Asara, B. D. Manning, mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science 351, 728–733 (2016). [Abstract]

Spatial control of cellular enzymes

Intracellular bodies composed of purine biosynthetic enzymes exhibit an mTOR-mediated association with mitochondria.

J. B. French, S. A. Jones, H. Deng, A. M. Pedley, D. Kim, C. Y. Chan, H. Hu, R. J. Pugh, H. Zhao, Y. Zhang, T. J. Huang, Y. Fang, X. Zhuang, S. J. Benkovic, Spatial colocalization and functional link of purinosomes with mitochondria. Science 351, 733–737 (2016). [Abstract]

E. H. Ma, R. G. Jones, (TORC)ing up purine biosynthesis. Science 351, 670–671 (2016). [Abstract]

Lung Physiology

Neuroendocrine cells as air sensors

Pulmonary neuroendocrine cells aggregate to form airway sensors and control the lung’s immune response.

K. Branchfield, L. Nantie, J. M. Verheyden, P. Sui, M. D. Wienhold, X. Sun, Pulmonary neuroendocrine cells function as airway sensors to control lung immune response. Science 351, 707–710 (2016). [Abstract]

J. A. Whitsett, E. E. Morrisey, Modulating pulmonary inflammation. Science 351, 662–663 (2016). [Abstract]


Quantitative analysis of epigenetic memory

Quantitative, single-cell measurements reveal characteristics of epigenetic control of transcription.

L. Bintu, J. Yong, Y. E. Antebi, K. McCue, Y. Kazuki, N. Uno, M. Oshimura, M. B. Elowitz, Dynamics of epigenetic regulation at the single-cell level. Science 351, 720–724 (2016). [Abstract]

A. J. Keung, A. S. Khalil, A unifying model of epigenetic regulation. Science 351, 661–662 (2016). [Abstract]

The SAGA of removing nucleosomal ubiquitin

The structure of a transcription complex bound to a nucleosome reveals how ubiquitin can be removed from nucleosomes.

M. T. Morgan, M. Haj-Yahya, A. E. Ringel, P. Bandi, A. Brik, C. Wolberger, Structural basis for histone H2B deubiquitination by the SAGA DUB module. Science 351, 725–728 (2016). [Abstract]

J. L. Workman, It takes teamwork to modify chromatin. Science 351, 667 (2016). [Abstract]


T cells target peptide combos

Autoimmune T cells recognize covalently linked peptides derived from two distinct proteins.

T. Delong, T. A. Wiles, R. L. Baker, B. Bradley, G. Barbour, R. Reisdorph, M. Armstrong, R. L. Powell, N. Reisdorph, N. Kumar, C. M. Elso, M. DeNicola, R. Bottino, A. C. Powers, D. M. Harlan, S. C. Kent, S. I. Mannering, K. Haskins, Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science 351, 711–714 (2016). [Abstract]

Genetic programming for self-renewal

Tissue macrophages and embryonic stem cells use similar genetic programs to self-renew.

E. L. Soucie, Z. Weng, L. Geirsdóttir, K. Molawi, J. Maurizio, R. Fenouil, N. Mossadegh-Keller, G. Gimenez, L. VanHille, M. Beniazza, J. Favret, C. Berruyer, P. Perrin, N. Hacohen, J.-C. Andrau, P. Ferrier, P. Dubreuil, A. Sidow, M. H. Sieweke, Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells. Science 351, aad5510 (2016). [Abstract]