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Stromal clusters (murine)
Fig. 4. Tumor proteins that are highly correlated with stromal protein clusters. (A) Unbiased MSigDB annotation of proteins found within each stromal (mouse) cluster
and assignment to Hanahan and Weinberg’s Hallmarks of cancer (n = 21 PDX tumors) (41). FDR was calculated using default parameters in GSEA. (B) Correlation of proteins of
individual tumor (human) proteins to stromal (mouse) protein clusters (n = 21 PDX tumors). Numbers of significant (Benjamini-Hochberg adjusted P < 0.05) positive (red) and
negative (blue) correlations between human proteins and mouse protein clusters are indicated on the x axis. Human proteins are displayed by the genome coordinates of
their genes based on University of California, Santa Cruz hg19 annotation.
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to regulatory cross-talk with the microenvironment. To provide one
estimate using integrated PDX tumor-stroma analysis, we determined
how many stromal proteins were significantly correlated with each tu-
mor protein. These results (Fig. 4B) demonstrated that a large portion
of the tumor proteome was co-regulated with the stroma. Nineteen
proteins in the tumor were significantly correlated with at least 40%
of proteins in one or more of the six stromal clusters, and 44 were sig-
nificantly correlated with at least 30% of stromal proteins in a single
cluster. Among the proteins in the tumors that were most correlated,
both positively and negatively, with the stromal proteome (Table 1)
are many known to regulate the tumor-stroma interface. PEBP1, also
known as RKIP, a metastasis suppressor that decreases infiltration of
tumors by myeloid cells (43), was significantly negatively correlated
with seven proteins in stromal cluster V, which contains MDSC mark-
ers. Nardilysin 1 (NRD1), a metalloproteinase that can remodel the
ECM, was significantly negatively correlated with nine proteins in
the ECM-related cluster II. Notably, the list of tumor proteins highly
correlated with stromal protein clusters included many with unknown
roles in the tumor microenvironment. The full list of tumor-stroma
correlation values (data file S1) serves as a set of candidates responsi-
ble for stromal remodeling.
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DISCUSSION
Tumors reprogram theirmicroenvironment to forma tumor-associated
niche (6), but our current conceptualization of tumor-stroma remains
static and superficial, with limited understanding of the dynamic, progres-
sive process of stromal education by tumors. Many of the key processes
involved in remodeling of a naïvemicroenvironment are depicted using
cell lines and xenografts, but it is unclear which of these are relevant to,
and used by, patient tumors. In addition, molecular knowledge of mi-
croenvironmental signaling interactions remains far from complete.
The phenotypic plasticity of cancer cells coupled with the potential se-
lection of myriad possible cellular subclones of tumors intimates that
development of the microenvironmental niche may be highly mutable,
dynamic, and context-dependent. We used species-specific proteomic
analysis of serially passaged subcutaneous breast cancer PDXs to ad-
dress threemajor questions. First, can unbiased cross-species proteomic
profiling provide sufficient depth and repeatability to improve our con-
ceptualization of the tumor-stroma interface in breast cancer? Second,
how do patient breast tumors educate a naïve microenvironment dur-
ing colonization and what is the molecular persistence and heterogene-
ity of this process across tumors? Third, do subcutaneous PDXs provide
molecular insights into stromal education that are consistent with what
occurs in primary patient breast tumors?

Holistically, we found that tumor-specific education of the stroma
was highly prevalent, individualized, and molecularly coordinated in
breast cancer. The reproducibility of a tumor’s education of stromal
proteins is consistent with the notion that patient breast tumors are
locked into a predetermined set of instructions due to metabolic, en-
ergetic, or other deficiencies that are rigid and specific (31). This is
likely selected for because of the numerous obstacles that normal cells
have to overcome to become tumorigenic. Alternatively, tumors har-
bor cancer stem cells (44), whichmay be enriched in PDXs during pas-
sage and lead to the limited stromal proteomic heterogeneity within a
single tumor line observed across multiple passages for each PDX. The
lack of observed proteomic heterogeneity within a single PDX tumor
line suggests that renewed emphasis ondrugging the stroma as an anti-
tumor strategy may be highly effective.
Wang et al., Sci. Signal. 10, eaam8065 (2017) 8 August 2017
These results were enabled by the high repeatability, multiplexing,
and depth of coverage of the cross-species quantitative proteomics
method used in this study, and serve as an initial characterization of
proteomic stromal education by patient tumors. A previously published
study used species-specific peptide sequences in an effort to identify
proteins exported to the ECM (45); our study here was a large-scale
analysis of the tumor and microenvironment in PDXs using species-
specific proteomics and yielded a 10-fold increase in proteomic cover-
age of the microenvironment over the previous report (45), including
detection and quantitation of 4784 human and 1721mouse genes at the
proteome level with species- and gene-unique peptides. Fifty-one per-
cent and 52% of peptides and genes, respectively, were filtered out due
to the lack of species specificity, and an additional 3% of protein iden-
tifications were filtered out due to the lack of gene specificity. Our study
focused on proteomic variability of PDXs across biological replicates
and passages, as occurs during routine PDX propagation, which was con-
sistent with amedianR2 value of 0.47. This robust cross-species proteomic
platform has the potential to characterize perturbations in PDXs and
the tumor-stroma interface because of genomic heterogeneity across
subtypes and in response to drug treatment to uncover drug resistance
mechanisms. PDXs complement syngeneic mouse models because
PDXs are derived from patient tumors and also enable unambiguous
molecular characterization of the tumor versus stroma. Future studies
using PDXs of other cancer origins are needed to determine whether
heterogeneity of the proteomes of tumormicroenvironments is specific
to breast cancer.

Delineating the molecular cross-talk between tumor and stromal
cells in the tumor microenvironment remains an important challenge
in an effort to understand tumor biology (46–48), especially because of
its correlation with anticancer response (49–53) andmetastasis (6, 54).
Our study characterizes proteins in the stroma that are susceptible
to differential induction by the tumor (table S4) and identifies tumor-
specific proteins that are highly correlated with stromal protein sig-
natures (data file S1). This is an important step toward the identification
of microenvironmental targets that inhibit tumor growth or even re-
turn tumor cells to normal, which has been described as the next fron-
tier in anticancer agents (55). These results were consistent with the
prevailing view that tumors colonize their microenvironment through
regulation of the ECM and recruitment of cells and factors, given that
we observed changes in the ECM (clusters II and III) and regulation of
the complement system (cluster IV), MDSCs (cluster V), and macro-
phages (cluster VI). Many of the differentially quantified stromal pro-
teins identified correlate with breast cancer prognosis and treatment.
For example, nine stromal genes with differential protein quantities,
including S100A9 and LCP1, have mRNA quantities in the stroma that
correspond to patient outcome (16). Considering the high co-regulation
of stromal protein signatures in both PDX and patient tumors in the
TCGA, these observations demonstrated that PDX models largely re-
capitulate how primary tumors interact with the microenvironment
and are goodmodels to study the tumor-stroma interface despite their
lack of a lymphoid system, which also limits the utility of PDXmodels
to study immunotherapy and other T cell–driven biology.Notably, this
regulation occurs in PDXs grown subcutaneously, in a nonorthotopic
location. Because many of the identified biological pathways are drug-
gable, these results suggest that proteomics can guide therapeutic studies
targeting the stroma. Furthermore, proteomic characterization of
PDX models may provide insight into how seemingly dormant micro-
metastases are prompted to grow by tumor removal, an important con-
sideration in treatment decisions.
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Tumors have previously been shown to harness the stroma for
their benefit, but the extent of stromal education by patient tumors at
the level of the proteome has not been reported. Our analysis suggested
that stromal education is far more pervasive, coordinated, and individ-
ualized at the protein level than previously anticipated. Despite each
tumor educating a unique repertoire of stromal proteins, the shared reg-
ulation of stromal protein signatures suggests that they play a critical
role in tumorigenesis. The high consistency and molecular rigidity of
stromal education by patient tumors suggest that elucidating how indi-
vidual tumors alter their stromal environment will yield significant in-
sights into this important and complex aspect of tumor biology.
7

MATERIALS AND METHODS
Materials
Materials were purchased from Sigma-Aldrich except for dithiothreitol,
trifluoroacetic acid (TFA), andNaCl (Thermo Fisher Scientific) and tris
and glycine (Bio-Rad). Liquid chromatography–mass spectrometry
(LC-MS) solvents were purchased premixed from Honeywell. High-
pH reversed-phase (RP) fractionation columns and TMT10 reagents
were from Thermo Fisher Scientific.

Generation and preparation of xenograft tumor samples for
proteomic analysis
The source and generation of all PDXs in this study were previously
reported (15). All human tissues for these experiments were processed
in compliance with National Institutes of Health regulations and in-
stitutional guidelines approved by the Institutional Review Board at
Washington University. All animal procedures were reviewed and
approved by the Institutional Animal Care and Use Committee at
WashingtonUniversity in St. Louis,MO. PDX tumors fromestablished
Wang et al., Sci. Signal. 10, eaam8065 (2017) 8 August 2017
basal (WHIM2, WHIM4, and WHIM14), luminal (WHIM16 and
WHIM 20), claudin-low (WHIM12), and HER2E (WHIM11) breast
cancer subtypes were raised subcutaneously in 8-week-old NOD.
Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice (Jackson Labs), as previously
described (15, 56). Tumors from each animal were harvested by sur-
gical excision at ~1.5 cm3, rapidly divided into four pieces, and snap-
frozen by immersion in a liquid nitrogen bath immediately after
excision.

Tissue lysate preparation
Samples were cryopulverized into powder using a Covaris CP02
CryoPrep system and solubilized in lysis buffer with a Covaris S220X
sonicator (peak incident power: 100W, 500 cycles per burst, 10% duty
factor, 4°C, 4min) as in (56). The lysis buffer [50mMHepes (pH 7.5)]
contained the following: 150 mM NaCl, 0.5% Triton X-100, 1 mM
EDTA, 1 mM EGTA, 10 mM NaF, 2.5 mM NaVO4, 1× Protease In-
hibitor Cocktail (Roche), and phosphatase inhibitor cocktails 2 and 3
(Sigma). Lysates were centrifuged at 22,000g for 10 min to pellet any
debris and then filtered through a 0.45-mm filter (Millipore Ultrafree-
MC HV) to further remove insoluble protein. Protein concentrations
were determined (Advanced Protein Assay, Cytoskeleton) to prepare
aliquots with concentrations of ~5 mg/ml, storage at −80°C, and sub-
sequent digestion.

Sample digestion and TMT labeling
The PDX lysates (0.8 to 2 mg) were thawed on ice, and the protein was
precipitated using 2-DClean-Up kit (GEHealthcare) and resolubilized in
8Mureawith 100mMtriethylammoniumbicarbonate (TEAB) (pH8.5).
The samples were reduced with 5 mM tris(2-carboxyethyl)phosphine
for 30 min at 25°C, alkylated with 40 mM iodoacetamide for 30 min at
25°C in the dark, and quenchedwith 20mMdithiothreitol for 15min at
Stromal cluster

Human
protein
No. of correlated
stromal proteins

(% proteins in cluster)

r
 Stromal cluster
Human
protein
No. of correlated
stromal proteins

(% proteins in cluster)

r

MRI1
 3 (15)
 0.76
 VI
 MVP
 8 (31)
 0.75
SORD
 3 (15)
 0.69
 ENO3
 8 (31)
 0.73
PSMD5
 3 (15)
 0.69
 PFKP
 8 (27)
 0.72
SLC9A3R2
 3 (15)
 0.82
 HLA.A
 7 (27)
 0.72
STARD10
 3 (15)
 0.69
 PSMB8
 7 (27)
 0.78
TPD52
 3 (15)
 0.75
 MSRA
 6 (23)
 0.71
ATP1B3
 4 (20)
 −0.71
 TSTD1
 10 (38)
 −0.77
LRRC59
 4 (20)
 −0.72
 DHCR7
 10 (38)
 −0.74
TRIP10
 3 (15)
 −0.71
 APOA1BP
 9 (35)
 −0.78
PFN1
 3 (15)
 −0.69
 PEX19
 8 (31)
 −0.75
FLNA
 3 (15)
 −0.71
 HYOU1
 7 (27)
 −0.72
DPYSL3
 3 (15)
 −0.73
TPD52L2
 3 (15)
 −0.72
AHNAK2
 3 (15)
 −0.72
NXF1
 3 (15)
 −0.70
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25°C. Samples were diluted to 2 M urea with 100 mM TEAB before
addition of 5 mg of trypsin (Fluka, analytical grade). Samples were in-
cubated at 37°C for 16 hours. Another 5 mg of trypsin was added and
incubated at 37°C for 4 hours. Samples were filtered through a 30-kDa
filter (Millipore Ultracel YM-30) and labeled with TMT10 reagents
per the manufacturer’s instructions. Samples were desalted with C4
and graphitized carbon tips (Glygen), loaded using 1% acetonitrile
(ACN) and 1% formic acid (FA), eluted with 60% ACN and 1% FA,
and combined before high-pH RP fractionation.

High-pH RP fractionation
TMT10-labeled peptides were separated by high-pHRP spin columns
(Thermo Fisher Scientific, catalog no. 84868). After conditioning
columns twice with 300 ml of ACN and three times with 300 ml of wa-
ter, samples were loaded into the column. Columns were centrifuged
at 3000g for 1min, followed by awashwith 300ml of 0.1% triethylamine.
Three-hundred microliters of each elution buffer (5%, 7.5%, 10%,
12.5%, 15%, 17.5%, 20%, and 50% ACN in 0.1% TFA) was added in
sequence to the column followed by centrifugation at 3000g for 1 min
to collect each eluted fraction. Elutions from 5% and 7.5% ACN were
pooled following elution. Samples were evaporated to dryness and re-
suspended in 0.1% FA for LC-MS analysis.

Pooling TMT-labeled samples
An initial set of six PDX tumors, one biological replicate each, was
pooled together to make pool A (fig. S6A). The sample set was first
used to evaluate assay reproducibility (fig. S6B; TMT10 plex #1; shown
in fig. S3) as well as determine relative protein abundance in these
PDXs. A set of 15 additional PDXs was pooled into pool B (fig. S6A)
that was used only to determine relative protein abundance in each
PDX in TMT10 plex #2 and plex #3 (fig. S6B). Pool A was included
as a TMT10 channel in all analyses to stitch all three TMT10 plexes
together. The Pearson’s correlation coefficients of all protein abun-
dance ratios between pool A and B, including both human andmouse
proteins, were very high, averaging 0.994 across analyses (fig. S7A). In
addition, the raw intensity of individual spectral matches in each pool
was very linear (average slope = 0.981; fig. S7B) and similar (average
linear regression r2 = 0.963; fig. S7B). We also analyzed one sample
(WHIM12.2; fig. S6B) in both TMT10 plex #2 and #3 to validate that
all relative protein abundance across the twoTMT10 plexeswith pool B
(fig. S6B) resulted in similar protein profiles. The TMT10-labeling
schematic for all samples analyzed is shown in table S2.

LC-MS data acquisition of TMT10-labeled samples for
quantitative protein profiling on Thermo Elite LC-MS
TMT10 plex #1 was analyzed on a Thermo Elite LC-MS. LC was
performed using two 75 mm × 15 cm ChromXP C18 columns in tan-
demwith a 4-hour LC gradient from 5 to 30%ACN over 180min and
30 to 45% over 25min.MS analysis was performed on anOrbitrap Elite
with a TOP15 method. MS1 scan range was 380 to 16,000 mass/charge
ratio (m/z) at a resolution of 120,000 for 10 ms. MS2 spectra were gen-
erated by high-energy collisional dissociation (HCD) fragmentation
and acquired with 30,000 resolution and scans starting at 110 m/z.

LC-MS data acquisition of TMT10-labeled samples for
quantitative protein profiling on Thermo Q Exactive LC-MS
For each high-pHRP fraction, 2 ml of sample was loaded onto a 75 mm
inner diameter × 25 cm Acclaim PepMap 100 RP column (Thermo
Fisher Scientific). Peptide separations were started with 95% mobile
Wang et al., Sci. Signal. 10, eaam8065 (2017) 8 August 2017
phase A (0.1% FA) for 5 min and increased to 25% mobile phase B
(100% ACN, 0.1% FA) for more than 95 min, followed by a 10-min
gradient to 40% B, a 5-min gradient to 90% B, and wash at 90% B for
5 min, with a flow rate of 300 nl/min. Full-scan mass spectra were
acquired by the Orbitrapmass analyzer in them/z of 375 to 1400 with
a mass resolving power of 70,000. Fifteen data-dependent HCDs were
performed with a mass resolving power set to 35,000, an m/z range
starting from 100 up to a maximum determined by the instrument,
an isolation width of 0.7m/z, and normalized collision energy setting
of 32. The maximum injection time was 50 ms for parent ion analysis
and 105 ms for product ion analysis. Target ions already selected for
MS/MS were dynamically excluded for 30 s. An automatic gain con-
trol target value of 3 × 106 ions was used for full MS scans and 1 × 105

ions for MS/MS scans. Peptide ions with charge states of one, or
greater than six, were excluded from MS/MS interrogation.

Peptide identification
Protein and peptide identification as well as relative quantitation were
performed with Proteome Discoverer software (version 1.4.0.288;
Thermo Fisher Scientific) usingMascot (v. 2.4.1) as the search engine.
MS/MS spectra were searched against a concatenatedNational Center
for Biotechnology Information Reference Sequence (RefSeq version
July 2013) database of human (36,380 entries) and mouse (24,821 en-
tries), and cRAP (57) (version 1.0, 1 January 2012, 116 entries). The
search parameters included digestion with trypsin/P (two or four
missed trypsin cleavages with Elite versus QE data, respectively), static
modification of cysteine by carbamidomethylation, TMT10 labeling
of lysine, and peptide N termini, and variable modifications included
methionine sulfoxide, deamidation of asparagine, deamidation of
glutamine, acetylation of protein N terminus, TMT10-plex derivati-
zation of peptide N termini, and S-carbamoylmethylcysteine cycliza-
tion of N-terminal cysteine. Mass tolerances were 10 ppm (parts per
million) mass accuracy on precursors and 0.02 Da on fragment ions.
Peptide FDR was calculated by target-decoy searching against a
reversed data set, and peptides were filtered at 1% FDR. A peak inte-
gration tolerance of 20 ppm was used for extracting TMT10 reporter
ion intensities.

Quantitation, data processing, and normalization
The resulting peptide sequences were mapped onto both human and
mouse genes using the PGx software package (version 1.0) (58) to
identify species- and gene-unique peptides (fig. S2). When a peptide
sequence was observed in both human and mouse sequences, it was
defined as “species-shared.”Otherwise, peptide sequenceswere defined
as “species-unique.” The species-specific peptides were further charac-
terized as gene-unique for their respective species.When a peptide was
matched to only one gene that was represented by only one database
sequence entry or multiple database sequence entries, the peptide was
defined as “gene-unique.” Otherwise, peptides were considered as
“gene-shared.” To quantify proteins at the gene level, only species-
and gene-unique peptides were used.

Relative quantification of protein abundance was performed using
the reporter ion signals from the TMT10 multiplex experiments (fig.
S2). All peptide spectrummatches (PSMs) with an FDR of≤1% were
“rolled up” to the gene level by summing the peak heights for each
gene- and species-specific PSM, and quantified proteins were reported
by their respective gene symbols. Genes were excluded from further
analysis if their summed peak heights from the reporter ionswere zero
or had missing values in any TMT channel. For each gene, summed
11 of 14

http://stke.sciencemag.org/


SC I ENCE S I GNAL ING | R E S EARCH RE SOURCE

 on A
ugust 18, 2017

http://stke.sciencem
ag.org/

D
ow

nloaded from
 

peak heights were then normalized to the internal reference pool in-
cluded in each TMT10 plex. Mouse genes were further filtered by re-
moving plasma (59) and abundant erythrocyte proteins identified by
proteomics (60) before downstream analysis. Relative intensities were
log2-transformed, subtracted with log2 scalemedian, and then divided
by log2 scale SD sample-wise.

Statistical analysis
The coefficients of determination (R2) were represented in box plots
(Fig. 1B). In each box plot, the lower and higher whiskers represent
the first and third quartiles, respectively, the horizontal line indicates
the position of median, and dots outside of whiskers are outliers.
GSEA (version 2.2.1) analysis was performed using default param-
eters, and the software package generated statistical analysis. Hierar-
chical clustering (heatmap.2 in R) was performed using Spearman’s
correlation coefficients andWard’sminimumvariancemethod. Color
gradient of heatmapwas set as red being the highest and blue being the
lowest protein abundance. The human and mouse data were statisti-
cally analyzed using one-way ANOVA by considering PDX samples
as multiple groups, respectively. Differences were regarded as signifi-
cant if the adjusted P value (Benjamini-Hochberg method) was less
than 0.05. For PCA, the differentially regulated human and mouse
proteins were used to calculate principal components, and the data
points projected onto the first three principal components were visual-
ized in a three-dimensional space.

To explore whether the use of male and female mice in the basal
subtype PDXs affects our species-specific proteomics results, we per-
formed PCA across all 21 tumors using the proteins with significantly
altered abundance that were identified by ANOVA. Principal com-
ponents with up to 80% variance were kept for visualization (fig. S4).

To identify interaction patterns between tumor (human) and stro-
mal (mouse) clusters, correlation analysis was performed on the basis
of significantly differentially quantified human and mouse proteins
(Fig. 4). Specifically, mouse and human proteins after applying
ANOVA were used to calculate Spearman’s correlation coefficients
between species, and P values from correlation tests were further
adjusted by Benjamini-Hochberg method. For each human protein,
the correlation with maximum absolute value in a stromal cluster
was used to represent the tumor and stromal interaction. The output
data set served as an input for GSEA analysis (Fig. 4A). The numbers
of significantly correlated human-mouse protein pairs were also re-
corded for each human protein split by mouse clusters when set
threshold for adjusted P value as 0.05 (Fig. 4B). Blue and red lines
indicate the number of negative and positive significant correlation,
respectively.

Data from breast cancer TCGA and Clinical Proteomic Tumor
Analysis Consortium (CPTAC) (Fig. 3) were used to determine the
extent to which the clusters in the mouse stroma are regulated in hu-
man patients. RNA-sequencing (RNA-seq) data from 1095 primary
breast tumors from the TCGA (36) (TCGA RNA-seq V2 pipeline)
were analyzed for coordination at the transcript level. Global iTRAQ
proteomic data from105 patients in the CPTAC analysis of the TCGA
(37) were analyzed for coordinate protein level regulation. For the
gene sets found by hierarchical clustering of the mouse stromal data
(Fig. 2B), Spearman’s correlation coefficients were used to determine
the strength of coordination in each data set. P values (Fig. 3B) for the
correlation matrices were determined using Monte Carlo simulation
by sampling 10,000 randomized sets of equal size to the test clusters
and ranking the sums of the Spearman’s correlation coefficients. For
Wang et al., Sci. Signal. 10, eaam8065 (2017) 8 August 2017
Fig. 3 (C and D), CPTAC proteomics data were parsed by TCGA-
assigned PAM50 subtypes and pathologic stage, respectively. Statistical
significance was assessed using Student’s t tests. Data visualization was
implemented using R (version 3.1.2) unless indicated otherwise.
SUPPLEMENTARY MATERIALS
www.sciencesignaling.org/cgi/content/full/10/491/eaam8065/DC1
Fig. S1. Framework to study the tumor-intrinsic biology of breast cancer PDXs.
Fig. S2. Data processing workflow of finding species- and gene-unique PSMs.
Fig. S3. Correlation (R2) plot of protein abundance between all biological and process
replicates in the data set pre-ANOVA filtering.
Fig. S4. PCA of ANOVA-filtered proteins labeled by mouse gender.
Fig. S5. mRNAandprotein abundanceof the stromal proteomic signatures in individual TCGA tumors.
Fig. S6. TMT10 pooling and data acquisition.
Fig. S7. Comparison of TMT10 global reference pools A and B.
Table S1. Metastatic information and passage number of PDX in each biological replicate.
Table S2. TMT10 labeling schematic for all samples analyzed.
Table S3. PDX protein abundance.
Table S4. List of all proteins significantly correlated with each stromal cluster.
Data file S1. List of all proteins and correlation values (r) in each stromal cluster.
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