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             The idea that infl ammatory processes con-
tribute to brain-related pathologies, such as 
depressive disorders, has been gaining trac-
tion, particularly because activation of the 
infl ammatory immune response might also 
account for the frequent comorbidity that 
occurs between depression and heart dis-
ease, metabolic syndrome, diabetes, auto-
immune disorders, and stroke recovery (1, 
2). This focus has increased further in light 
of the possibility that infl ammatory factors 
might serve as biomarkers to predict the de-
velopment of depression and its recurrence, 
as well as to predict the most effi cacious 
treatments of depressive disorders (2). We 
address current issues linking infl ammato-
ry processes to growth factors and hence to 
depression, and the potential involvement 
of those processes in the comorbid condi-
tions that have often been associated with 
depressive disorders (Fig. 1). 

The view that infl ammatory factors con-
tribute to depression was initially predi-
cated on fi ndings that circulating cyto-
kines (signaling molecules of the immune 
system) and other infl ammatory factors 
were increased in depressed patients. Fur-
thermore, in rodents, infl ammatory agents, 
such as lipopolysaccharide (LPS), elicited 
behaviors reminiscent of depression (1), 
and low doses of a bacterial endotoxin 
provoked low mood or fatigue in humans 
(3). These changes were accompanied by 

increased amounts of circulating interleu-
kin-6 (IL-6) and tumor necrosis factor–α 
(TNF-α), increased amygdala neuronal 
activity in response to socially threatening 
stimuli, and a feeling of “social disconnec-
tion” that could favor the evolution of de-
pression (4).

Particularly strong evidence for a cy-
tokine/depression relationship came from 
studies showing that the administration of 
interferon-α (IFN-α) for the treatment of 
some cancers and hepatitis C was accom-
panied by depression in about 50% of pa-
tients, particularly those with a history of 
depression or with low concentrations of 
the serotonin (5-HT) precursor tryptophan 
(5). Moreover, in animal models of depres-
sion, as well as in humans, antidepressants 
attenuated the depressive effects of IFN-α, 
and the positive effects of antidepressant 
treatments could be enhanced by adjunctive 
anti-infl ammatory agents (5, 6).

Several perspectives have been offered 
to account for how infl ammatory fac-
tors might promote brain neurochemical 
changes that lead to depression. In addi-
tion to gaining limited access to the central 
nervous system (CNS) from the periphery, 
cytokines are produced in the brain by glial 
cells, and their production is increased in 
response to various insults, such as head in-
jury, ischemia, and stroke (7), and by physi-
cal or psychological stressors (8). Once 
increased, cytokines might have either posi-
tive (neuroprotective) or negative (neurode-
structive) actions, depending on their abun-
dance. For instance, after ischemic stroke, 
depressive-like illness is common (9), and 
this condition is probably secondary to in-

creased levels of cytokines. Indeed, a key 
feature of depression (anhedonia), refl ected 
by reduced consumption of a favored food 
(sucrose), was elicited in animals models of 
ischemic stroke, which was attenuated by 
pretreatment with the IL-1 antagonist IL-
1ra (10), as were several behavioral chang-
es ordinarily elicited by psychological and 
physical stressors (11).

Typically, considerable psychological 
distress accompanies events (for example, 
stroke or traumatic brain injuries) that pro-
mote increased cytokine concentrations in 
the brain. Likewise, IFN-α immunotherapy 
for cancer and hepatitis C is accompanied 
by the distress caused by illness, as well as 
that brought on by the treatment itself. Thus, 
it has been suggested that the affective effects 
of treatments or conditions that increase in-
fl ammatory factors might be aggravated by 
stressful consequences that often stem from 
the treatments or the illness itself. Indeed, 
in rodents, proinfl ammatory treatments, in-
cluding IFN-α, administered on a backdrop 
of stressors, such as social defeat or social 
disruption, exaggerated the increases in cor-
ticosterone and brain monoamine utilization 
and mRNA expression of serotonin recep-
tors, as well as diminishing the increase  in 
peripheral and central transcripts for multiple 
cytokines elicited by the administration of a 
particular cytokine in the absence of addi-
tional stress (8, 12). Likewise, in humans, 
self-reported signs of depression elicited by 
a stressor comprising social exclusion were 
increased after treatment with intravenous 
endotoxin (13).

To explain how cytokine variations 
within the brain are translated into depres-
sion, it was suggested that increases in 
cytokines, like that elicited by IFN-α im-
munotherapy, lead to increased expression 
of the gene encoding tryptophan-degrad-
ing enzyme indoleamine 2,3-dioxygenase 
(IDO), resulting in diminished 5-HT con-
centration. Alternatively, depression might 
result from the conversion of tryptophan to 
kynurenine by IDO, which in turn produces 
the metabolites 3-hydroxy kynurenine and 
quinolinic acid, and the N-methyl-D-aspar-
tate (NMDA) antagonist kynurenic acid. 
The neurotoxic actions of these metabolites 
might cause the development of depres-
sion (14, 15). In this regard, the depression 
evident after stroke could be due to a cyto-
kine-induced increase in IDO that leads to 
reduced 5-HT availability (16).

The limited improvements that have been 
witnessed in response to treatments that fo-
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cused on serotonergic mechanisms gave 
rise to the exploration of novel alternatives 
to 5-HT in mediating depression. The fi nd-
ings that neuroplasticity might be associ-
ated with depressive illness and that selec-
tive serotonin reuptake inhibitors (SSRIs) 
might act through effects on neuroplasticity 
have received considerable support (17). The 
positive effects of several antidepressants 
(and electroconvulsive shock) were accom-
panied by enhanced hippocampal neuro-
genesis. Furthermore, antidepressants and 
electroconvulsive shock therapy prevented 
the inhibition of hippocampal cell prolifera-
tion induced by stressors (17). Conversely, 
preventing antidepressants from stimulating 
hippocampal neurogenesis by selective irra-
diation attenuated the behavioral outcomes 
induced by antidepressants (18). Neuroplas-
ticity associated with depression might be re-
lated to the presence of infl ammatory factors. 
For instance, depression in humans was ac-
companied by reduced hippocampal volume 
coupled with increased peripheral IL-6 and 
C-reactive protein, particularly in individuals 
with lower messenger RNA (mRNA) abun-
dance of the glucocorticoid-inducible genes 
GILZ (encoding the transcriptional regula-
tor glucocorticoid-induced leucine zipper 
protein) and SGK1 (encoding serum- and 
glucocorticoid-regulated kinase 1). Because 
glucocorticoids normally limit cytokine pro-
duction, the presumed reductions in gluco-
corticoids in the depressed patients would 
favor increased cytokines and hippocampal 
disturbances (19).

Brain-derived neurotrophic factor 
(BDNF) may drive neuroplastic changes—

in particular, neurogenesis—and thus re-
ductions in BDNF, which may be stimulat-
ed by infl ammatory factors, may promote 
depression (17). This view was supported 
by the observation that in humans, chronic 
or strong life stressors and the accompa-
nying depression were associated with re-
duced BDNF expression, which may be due 
to epigenetic silencing, and hippocampal 
neurogenesis (20). Moreover, in mice, the 
administration of LPS or the individual cy-
tokines IL-1β, IL-6, or TNF-α reduces hip-
pocampal neurogenesis and BDNF abun-
dance (21).

The proinfl ammatory cytokines IL-1β
and TNF-α have also been reported to dis-
rupt hippocampal long-term potentiation 
(21, 22), a form of neuroplasticity associ-
ated with memory and involving several 
types of glutamate receptors, including the 
NMDA-type and AMPA-type receptors. 
Administration of the NMDA receptor an-
tagonist ketamine even to treatment-resis-
tant and suicidal patients has produced an 
immediate antidepressant response (23). 
The antidepressant and memory effects of 
ketamine appear to be related to altering 
the balance of signaling between the types 
of glutamate receptors and promoting the 
production of BDNF (24). These signaling 
effects in turn are linked to enhanced pro-
tein synthesis and increased synaptogenesis 
(24), which may underlie the protracted 
changes in mood and emotional memories 
that occur after a single ketamine injection. 
Thus, combining anti-infl ammatory or pos-
sibly even anti-cytokine agents with NMDA 
receptor antagonists, such as ketamine, 

could potentially produce synergistic anti-
depressant effects.

Impaired fi broblast growth factor–2 
(FGF-2) signaling, resulting from proin-
fl ammatory signals, may also contribute to 
this disorder. In rodents, brain FGF-2 ex-
pression was reduced by physical stressors, 
such as tailshock (25), and in depressed 
humans that died by suicide, FGF-2 ex-
pression was reduced in the prefrontal cor-
tex (26). Moreover, FGF-2 administered 
directly into the brain of rodents reduced 
stressor-provoked depressive-like behav-
iors, whereas the positive behavioral effects 
of antidepressant treatment in attenuating 
the effects of stressors were abolished by 
the administration of an FGF-2 antagonist 
(27). It is uncertain how FGF-2 comes to 
produce its antidepressant effects, although 
it could involve changes in glutamatergic 
signaling or in excitatory synapses.

Yet another cytokine that might infl u-
ence depression is macrophage migration 
inhibitory factor (MIF). This cytokine was 
increased in the circulation of individuals 
with high depression scores (28), and de-
pressive symptoms were correlated with 
enhanced MIF production in response to 
a challenge consisting of infl uenza virus 
vaccination (29). Studies in rodents have 
also indicated that MIF expression in pro-
liferating cells in the hippocampus was 
reduced by repeated exposure to stressful 
stimuli and that genetic deletion of MIF
disturbed hippocampal-dependent memory, 
along with promoting signs of anxiety and 
depression (30). Electroconvulsive shock 
and exercise, treatments that are effec-

Fig. 1. Infl ammatory factors and stressors can additively or syner-
gistically infl uence cytokine-regulated processes in the periphery 
and brain. Infl ammatory factors include the proinfl ammatory cyto-
kines interleukin-1β (IL-1β), IL-6, tumor necrosis factor–α (TNF-α), 
interferon-α (IFN-α), IFN-γ, and those that act in an anti-infl ammatory 
capacity, IL-4 and IL-10. The cytokine variations, in turn, infl uence sev-

eral growth factors, such as brain-derived neurotrophic factor (BDNF), 
fi broblast growth factor–2 (FGF-2), macrophage migration inhibitory 
factor (MIF), and erythropoietin (EPO), which favor the evolution of 
depressive disorders and anxiety. The balance between pro- and anti-
infl ammatory cytokines can also directly infl uence several illnesses 
that are comorbid with depression. 
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tive in reducing depressive-like behavior 
in animal models, increased hippocampal 
BDNF and MIF (31). Similarly, recombi-
nant MIF treatment increased the expres-
sion of BDNF and FGF-2 in the hippocam-
pus. Although long-term exercise induced 
mRNA expression of hippocampal BDNF 
in wild-type mice, this did not occur among 
the MIF −/− mice, which also exhibited re-
duced basal abundance of BDNF. In addi-
tion to these effects, treatment with MIF 
also increased the amount of 5-HT, as did 
prolonged exercise or electroconvulsive 
shock (31).

Paralleling these effects, aerobic exer-
cise induced the production of the hema-
topoietic cytokine erythropoietin (EPO), 
which has potent trophic effects, including 
the induction of BDNF and hippcoampal 
neurogenesis and other pro-neuroplastic 
factors (32). EPO may also have an antide-
pressive effect, which might be mediated by 
action on EPO receptors located in the CNS 
(33). Thus, the antidepressant-like effects 
of nonpharmacological strategies, such as 
exercise, could be related to the promotion 
of endogenous protective mechanisms in-
volving MIF and EPO.

MIF and EPO could be viewed as im-
portant general factors involved in regu-
lating a constellation of neuroplastic and 
neuroimmune processes that collectively 
are important not only in depression but 
also in a range of comorbid conditions. 
Indeed, increased MIF might be funda-
mental for cardiovascular events (34), and 
defi cits in EPO could give rise to anemia 
and immunosuppressive disorders, as well 
as cognitive disturbances. Findings such as 
these are consistent with the view that de-
veloping novel means of regulating endog-
enous MIF and EPO within the brain and 
periphery could yield substantial therapeutic 
benefi ts, and routinely measuring these fac-
tors might provide biomarkers that predict 
illness comorbidity (35). Whatever the case, 
future personalized medical treatments 
should consider multipronged strategies 
for dealing with complex disorders, such 
as depression and the range of comorbid 
symptom clusters. Such approaches ought 
to consider targeting the neuroimmune and 
neuroplastic factors that are likely to con-
tribute to and sustain the spectrum of de-
pressive symptoms.
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